ABSTRACT

La concha real es un recurso de importancia ecológica y económica en el Caribe que ha sufrido una reducción de sus poblaciones en el Caribe. Aldana Aranda (2008) reportaron una intensa y generalizada infección de un esporozoario en la glándula digestiva de S. gigas. Este estudio reporta la abundancia de Coccidiano (Apicomplexa) infectando la glándula digestiva de S. gigas en los Cayos de Florida en dos localidades: Offshore, donde la reproducción del caracol es frecuente (Pelican Shool, Eastern Sambo) y nearshore, donde la reproducción ha cesado relativamente recientemente (East Sisters Rock, Tingler Island). Se examinó la abundancia de Apicomplexa en la glándula digestiva de caracoles en Junio y febrero con el desarrollo gonadal para caracoles offshore y nearshore. Los resultados mostraron que Apicomplexa estuvo presente en los caracoles de cada localidad; los caracoles offshore y los caracoles nearshore estuvieron fuertemente parasitados. Los Caracoles de East Sisters Rock (nearshore, Junio) y los de Eastern Sambo (offshore, junio) tuvieron una alta incidencia de infección con una media de 32.34 y 30.35 parásitos, respectivamente; Pelican Shool (offshore, febrero) y Tingler Island (nearshore, febrero) tuvieron una media de 22.0 y 18.38 parásitos, respectivamente. La prueba de significancia del primer eje canonico: eigenvalue = 0.200, F-ratio = 87.160, P-value = 0.0020. Estos resultados permiten preguntarse: ¿Cuál es el factor ambiental que está generando esta generalizada infección en caracoles offshore como nearshore? ¿Cuál es la relación entre incidencia del parásito y desarrollo gonadal a lo largo de un ciclo anual? ¿Son los caracoles el huésped definitivo o son huésped intermediario, infectando otras especies, como la langosta?

PALABRAS CLAVES: Strombus gigas, parasites, digestive gland, Florida, reproduction

Occurance of Apicomplexa Infecting Queen Conch, Strombus gigas, From Off Shore and Near Shore in Florida

DALILIA ALDANA ARANDA1, ROBERT GLAZER2, GABRIEL DELGADO2, ERICK BAQUEIRO 3, and JORGE MONTERO 1

1 CINVESTAV IPN Km 6 antigua Carretera a Progreso Mérida Yucatán, México, 2Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute 2796 Overseas Highway, Suite. 119. Marathon, Florida 33050 USA 3Universidad Arturo Prarr, Chile. Amor Barrientos 2547, Osorno, Chile CINVESTAV IPN , Km 6 antigua Carretera a Progreso Mérida Yucatán, México

MOTS CLÉS: Strombus gigas, parasite, digestive gland, Floride, reproduction

KEY WORDS: Strombus gigas, parasite, digestive gland, Floride, reproduction

Presence D’Apicomplexa Infectant le Lambi, Strombus gigas, dans de Populations Proches et Distantes de la Côte

Le lambi, ressource d’importance écologique et économique dans toute la Caraïbe, a souffert d’une surexploitation généralisée de ses populations. Aldana Aranda (2008) a montré l’existence d’une infection importante et généralisée par des Sporozoaires. La présente étude montre l’état de cette infection par des Sporozoaires (Apicomplexa) dans les populations des Florida Keys dans deux zones, l’une loin de la côte (Pelican Shool et Sambo est) où les lambis se reproduisent normalement et l’autre, proche de la côte où la reproduction a été interrompue relativement récemment (Sister Rock et ile Tingler). La prévalence des Apicomplexa dans les glandes digestives pour des lambis récoltés en juin et en février, compare avec l’état des gonades a été étudiée pour les deux localités. Les observations montrent que les Apicomplexa sont présents dans la glande digestive des lambis pour toutes les localités échantillonnées. Les lambis de Sister Rock (localité proche, échantillons de juin) et de Sambo est (localité au large également juin) ont la plus forte incidence de parasites avec une moyenne de 32.4 et 30.35 parasiites respectivement. Pelican Shool (au large février) et ile Tingler, (proche de la côte février) ont une moyenne de 22.0 et 18.38 parasiites respectivement. Aucune corrélation n’a été trouvée entre le nombre de parasites et le développement des gonades en utilisant l’analyse canonique des variants. Le test du premier axe canonique donne les valeurs suivantes : eigen value = 200, F-ratio = 87.160, P-value = 0.0020. Ces résultats soulèvent différentes questions : Quels sont les facteurs environnementaux qui influent sur l’infection? Quelle est la corrélation entre ce parasite et le développement des gonades. Les lambis sont ils les hôtes definitifs ou servent ils d’hôtes intermédiaires?

MOTS CLÉS: Strombus gigas, parasite, glande digestive, Floride, reproduction
INTRODUCTION

Queen conch, Strombus gigas, represents one of the most valuable demersal resources in the Caribbean region, exceeded only by the spiny lobster. However, it is now an over exploited resource. Queen conch, has been the main source of food for the inhabitants of Caribbean coast and islands. Nowadays, conch meat is no longer an inexpensive staple food as it was some decades ago. It is now consumed most as a luxury specialty food. Conch meat prices at local markets vary between 10 and 15 US $/kg. However, in the French West Indies, prices vary from 20 Euros/kg for imported frozen meat up to 25 Euros/kg for locally harvested fresh meat. Landings of S. gigas were estimated at 6 520 mt in 1992, however this specie is now an over exploited resource (3132 tons, in 2002). Given the regional importance of S. gigas in the Caribbean, and the critical state of some of its populations the dynamics and reproductive biology have been studied (Aldana Aranda et al. 2003a, 2003b, 2003c). It is from this reproduction histological work that an atypical reproduction was reported by Delgado et al. (2004) studied the gonad development for conchs offshore and near shore from Florida, founding a not gonad development in conchs offshore. Castro et al. (2005) for conchs at San Andres, Island, reported an atypical reproductive cycle. It is from this reproduction histological work that the presence of an Apicomplexa-like parasite was detected in the digestive gland of S. gigas in the population of San Andres Island (Baqueiro et al. 2007). Aldana Aranda et. al (2007) studied the geographic distribution occurrence of Apicomplexa in conchs sampled in various sites from the Caribbean region, and found a generalized and intense infection around the Caribbean. The goal of this study was to check the presence of the parasite from Florida conch in two localities: offshore and those found near shore, to determine its abundance in each population and to identify the impact of the different stages of the parasite on gonad development in two months, February and June.

MATERIAL AND METHODS

Queen conchs were sampled in the Florida Keys (Figure 1), in two localities offshore at Pelican Shoal, Eastern Sambo, and nearshore where reproduction has ceased relatively recently (East Sisters Rock, Tingler Island). All sampled conchs were adult with a shell length ≥ of 22cm and a shell lip over 10 mm thick. Transverse sections of digestive gland and gonad tissues were processed for histology. The quantification to establish the occurrence of the parasite was done counting the total of every stage observed in fifteen 40 x fields per slide, thirty slides of different organisms per month were used. Sections were stained with a modified Goldner three chrome method (Gabe 1968). Digital images were taken with a Sony CCD-IRIS video-camera mounted on the Carl Zeiss microscope.

RESULTS

Different stages of an Apicomplexa like parasite were identified in the digestive gland of S. gigas: Trophozoites with conic apical structure, implanted in the cellular wall (Figures 2a). Gametocyst with no connection to the host cell (Figure 2b), and Gamonts characterized by their thin wall were observed (Figure 2c). Four stages of reproductive cycle were observed; gametogenesis characterized by active cell division; mature gametes may or may not be present. Mature stage with dominance of mature gametes, although some gametogenesis may be present. Spawn stage, characterized by follicles are partially or totally emptied and broken, eggs and sperms are being reabsorbed, and undifferentiated stage, where the presence of phagocytes and the gametes may not be identified from the microscopic section.

All sampled organisms presented one or more stages of the parasite in the digestive gland. The abundance of the different stages of parasite observed in the digestive gland of conchs in a field at 40x, where observe from conchs nearshore and offshore. The highest incidence of Apicomplexa with an average of 32.3 and 30.3 parasites per field, was observed in conchs sampled near shore (Sisters), in June and conchs sampled offshore (Sambo) in June, respectively. The lowest occurrence of Apicomplexa was observed in conchs sampled offshore (Pelican Shoal) in February and conchs sampled nearshore (Tingler) in February with 22.0 and 18.0 parasites per field, respectively.
Trophozoites was more abundant of conchs sampled at Tinglers in undifferentiated stage (Figure 3a) and gametocytes and gamonts are more abundant also at Tinglers for conchs in undifferentiated stage (Figure 3b). Median of Trophozoites, gamonts and gametocysts analyzed by sites (Figure 3c) was more abundant in conchs sampled at Sambo (offshore, June) and Sisters (near shore, June). Occurrence of trophozoites, gametozoites and gamonts by months for conchs sampled offshore and nearshore, showed that conchs sampled in June showed the highest incidence of Apicomplexa for conchs in gametogenesis, or mature, or spawn or undifferentiated stages (Figure 3d).

Figure 2. Different stages of Apicomplexa like parasite were identified in the digestive gland of *S. gigas*. (a) Trophozoites with conic apical structure, implanted in the cellular wall, (b) gametocyst with no connection to the host cell and (c) gamonts characterized by their thin wall.

Trophozoites was more abundant of conchs sampled at Tinglers in undifferentiated stage (Figure 3a) and gametocytes and gamonts are more abundant also at Tinglers for conchs in undifferentiated stage (Figure 3b). Median of Trophozoites, gamonts and gametocysts analyzed by sites (Figure 3c) was more abundant in conchs sampled at Sambo (offshore, June) and Sisters (near shore, June). Occurrence of trophozoites, gametozoites and gamonts by
Kruskal-Wallis test for occurrence of trophozoites by site does not showed difference between sites ($Kw = 0.3692, p = 0.9465$) (Figure 4a). Kruskal-Wallis analysis for gamonts and gametocystes by site showed difference between sites $Kw = 10.9888, p = 0.01178$ (Figure 4b). Kruskal-Wallis analysis for occurrence of trophozoites do not showed difference between months ($Kw = 0.08179, p = 0.7748$) (Figure 4c) and in figure 4d the Kruskal-Wallis analysis for occurrence of gamonts and gametozoites by months, showed a significant difference between months ($Kw = 10.1132, p = 0.00147$).

RDA analysis, between shell length, lip thickness and stages of Apicomplexa showed that conchs sampled offshore are biggest and they have more parasites than those sampled near shore. Test of significance of first canonical axis: eigenvalue = 0.025, F-ratio = 9.116, $p = 0.0020$. Test of significance of first canonical axis: eigenvalue = 0.025, F-ratio = 9.116, $p = 0.0020$ (Figure 5a). Figure 5b, showed RDA analysis between sites and stages of Apicomplexa. This figure illustrated that Sister and Sambo have more parasites than Tinglers and Pelican. RDA analysis between months and stages of Apicomplexa illustrated that conchs sampled offshore are biggest and they have more parasites than those sampled near shore. February is related with undifferentiated stage and few parasites (Test of significance of first canonical axis: eigenvalue = 0.200, F-ratio = 87.160, $p = 0.0020$) (Figure 5c). RDA Analyse between stages of Apicomplexa, sites, months and sexes showed that conchs sampled in June from Sisters and Sambo have more parasites than conchs sampled in February at Tinglers and Pelican (Test of significance of first canonical axis: eigenvalue = 0.174; F-ratio = 73.560; p value = 0.0020). (Figure 5d).

Figure 3. (a), Trophozoites abundance by site; (b), gamonts and gametocysts analyzed by sites. (c) median of trophozoites, gametocyts and gamonts by sites and (d) median of trophozoites, gametocyts and gamonts months.

Figure 4. (a) Kruskal-Wallis test for occurrence of trophozoites by site; (b), Kruskal-Wallis analysis for gamonts and gametocysts by site; (c), Kruskal-Wallis analysis for occurrence of trophozoites and (d), Kruskal-Wallis analysis for occurrence of gamonts and gametozoites by months.
Figure 6 illustrates the difference of gamont and gametozoites was observed between sites (Test Tukey, p < 0.05).
Anova analyze showed an average of Apicomplexa between sites does not show a significant difference (F0.05 = 0.3465; df = 1; 26; p = 0.3465). Average of Apicomplexa between months (February and June) shows a significant difference in each site (F0.05 = 12.960; df = 1;26; p = 0.0013) and an average of Apicomplexa does not show difference between sites in February and June (F0.05 = 0.01; df = 1;26; p = 0.9117) (Figure 7).

DISCUSSION

Apicomplexa parasites are of common occurrence in invertebrates and especially in mollusks (Lester and Davis, 1981, Hillman et al. 1982, Perkins 1988, Azevedo and Padovan 2004, Duszynski et al. 2004). The number of different stages of Apicomplexa per field was an average of 32.3 parasites per field in the highest incidence of conchs sampled near shore (Sisters), in June and conchs sampled offshore (Sambo) in June. The lowest occurrence of Apicomplexa was observed in conchs sampled offshore (Pelican Shoal) in February and conchs sampled nearshore (Tingler) in February with 22.0. Aldana Aranda et al. (2007) in a study of geographic distribution of Apicomplexa around the Caribbean reported a highest incidence of parasites at Puerto Rico with 85 and Martinica with 77 parasites per field. They reported a lowest incidence at Chinchorro with nine parasites per 40x field. Abundance of Apicomplexa of conchs from Florida observed in this study corresponds to region of median incidence observed in Gulf of Honduras, Mexican Caribbean, and Campeche Bank.

Statistical analysis in this study suggests that the occurrence of Apicomplexa have a temporal effect than a spatial effect. The highest occurrence of Apicomplexa was observed in June. Although samples came from adult-conchs in both localities; percentage of gametogenesis and mature stages were always low for conchs sampled at near shore sites. Undifferentiated organisms were the dominant stage in near shore sites. Conchs sampled offshore in June showed a gametogenesis activity and a high number of parasites. However, Aldana Aranda et al. (2008) for conchs sampled at San Andres Colombia observed a negative correlation between the abundance of parasites and gonad cycle. These authors with a GLM analysis showed how gametogenesis, maturity, and spawning increases as the number of parasites decreases, while the number of undifferentiated organisms increases with increasing number of parasites for conchs at San Andres. They concluded that the occurrence of Apicomplexa could be a factor that affects the gametogenesis activity. In this study, we cannot establish a negative correlation between gonad activity and the occurrence of parasites. Therefore, it is necessary to investigate the relationship between the abundance of parasites and the reproductive cycle throughout the year with particular emphasis on environmental factors as temperature, food availability, and currents to determine which might influence gonad development and spawning periods, and to determine the putative impact of this parasite on conch reproduction. Therefore, it is necessary to investigate the relationship between the abundance of parasites and the reproductive cycle to successfully develop a restocking protocol for the queen conch, *Strombus gigas*.

ACKNOWLEDGMENTS

Grants Conacyt-SEP 2005CONACYT Variación espaco-temporal del patrón reproductivo del caracol rosa *S. gigas* en diferentes habitats y su modelo biofísico de conectividad para el Caribe. Thanks to Ichthyology laboratory of CINVESTAV-IPN, Mérida for its support for histology processing.

LITERATURE CITED

