MANAGING AN AQUACULTURE ENTERPRISE

In recognition of the increasingly important role of management in an aquaculture enterprise, the SEAFDEC Aquaculture Department has offered a Training Course on Aquaculture Management. The main points in the lectures are excerpted in this issue, the bottom line in all these being that - managerial skills of the fish farmer could spell the difference between his success or failure.

Role of Management

Management can be simply defined as "getting things done through people". The first function of management is planning - the work of determining and specifying objectives, policies, programs, organizational relationships, procedures, and budgets. The manager must first set the objectives and then specify the factors, forces, and effects necessary for their accomplishment.

The second function of management is organizing - relating functions, physical factors, and personnel into proper relationships with one another in advance of the execution of a plan or a major part of it. It establishes proper relationships between (1) work to be done (2) people to do the work, and (3) place of work. In an aquaculture farm for example, the manager specifies the job duties of the technicians, e.g., pond liming, fertilization, and stocking of juveniles. He instructs the head technician to oversee the said duties and the workers in undertaking the work as instructed. The place of work is the pond.

The third function of management is controlling - constraining, coordinating, and regulating actions in accordance with plans for the attainment of specific objectives. Constraining of activities is within the limits of predetermined plans. There are standards of performance used as a basis of control. An example is production of milkfish per hectare per crop. A certain standard, 500 kg for example, is based on industry output. The standard unit cost of production is set at P12.00/kg. The production personnel in the farm are expected to produce the set target at a standard cost which has been predetermined. In controlling, the manager must be able to schedule, prepare, dispatch, direct, supervise, and undertake corrective measures relative to the specified work.

Business System

In an aquaculture enterprise, the business system includes the internal variables as well as the business environment that affects directly or indirectly the operations of an aquaculture enterprise.

The internal variables to be considered are raw materials, machineries, manpower, and money. These are the 4 Ms in business management. Raw materials are the seeds or fry, fertilizers and feeds needed for the growth and survival of the fish. The manager must be able to ascertain the availability of these materials in the right quantity, quality, at the right price and the right time for proper scheduling of work in the farm.

The machineries needed in an aquaculture farm are pumps, blowers, power generating sets and other laboratory equipment. The machineries must follow certain specifications that will suit the requirements in rearing the fish from fry to marketable size.

Manpower includes both the operations and managerial staff that will operate and manage the entire business operation. In a medium-scale prawn hatchery operation, production staff includes the head technician, hatchery aides, and a phycologist. The production staff is accountable to the Production Manager who schedules the production runs, controls the materials, monitors the flow of operation, and makes sure that the facilities are in good working condition. The Production Manager, in turn, is accountable to the General Manager who oversees the entire business operation to include the administrative and marketing functions. The General Manager is accountable to the owners of the enterprise through a Board of Directors in a corporate set-up.
Without money, no business or any organization for that matter will exist. The investment of the owners, known as owner’s equity, and external sources such as loans and trade credits are the sources of financing a business enterprise. For small scale aquaculture enterprises, outside financing through loans from banks and other formal financing companies is difficult to acquire because of strict collateral requirements.

The above-mentioned internal variables in the business system are affected by broader forces, e.g., government intervention, market supply and demand, technology, etc.

Item One: Business Policy

A business organization should have a policy which defines its business ethics, management philosophy, objectives, plans, or procedures in the conduct of business. A business policy is composed of a principle and rule of action.

An example of a business policy of a hatchery operator is “the company shall endeavor to satisfy the needs of prawn growers by supplying quality fry at reasonable prices.” The principle is “satisfy the needs of prawn growers” and the rule of action is “supply quality fry.”

A business policy must be formulated to permit decentralized decision-making in the various operational departments of the organization. It allows an individual to exercise his own initiative to a great degree.

The characteristics of a sound business policy are the following:
1. It must be based on objectives.
2. It must relate objectives to functions, physical factors, and personnel.
3. It must conform to ethical standards.
4. It should be stated in simple and understandable terms.
5. It should have stability and flexibility.
6. It should be sufficiently comprehensive.
7. It should be complementary and supplementary.

In making business policies, the following elements are undertaken:
1. Formulation - the selection of principles and rules of action that govern a particular type of activity.
2. Promulgation - getting the policy down to the level of the organization where it is to be applied. Personnel cannot be expected to conform with policies not known to them.
3. Education - making sure that everyone understands what the policy means. There should be a wide participation in the formulation of policies. Training and conferences as well as policy manuals are helpful in the dissemination of policies among the personnel.
4. Application - the day-to-day use of policy for making managerial and operative decisions. There are situations wherein policies need interpretation as it is applied.
5. Control - policy control must be performed to insure that operations are currently in consonance with policy.

Item Two: Business Environment in the Aquaculture Industry

An investor or a manager of an aquaculture enterprise should not only be knowledgeable of the internal operations of his business, but equally important is for him to be aware of the conditions prevailing in the overall business environment.

It is a typical Filipino trait to go into business because his neighbor has done so. Using the initial success of his neighbor as a parameter of good business, he decides to go into the same business. This is true in the aquaculture business especially in Panay and Negros Occ. In the southern part of Iloilo, more than 100 small- and medium-scale prawn hatcheries have prolifer-
ated. Majority of these investors were influenced by their neighbors or friends who were successful in their initial production runs.

After less than 6 months of operations, the new businessman starts encountering problems of low survival, diseases, cutthroat price competition, lack of buyers, lack of cash, etc. The next thing you hear is that he stopped operations, lost all his money, and is saddled with unpaid loans. He starts blaming his technician or consultant for failure to solve technical problems. He blames the middlemen for the low prices that he gets for his fry. He blames almost everybody except himself.

This typical Filipino entrepreneur failed in his business because he lacked the management skill to detect problems and come out with workable solutions. He failed to consider the business environment where he is operating.

Aquaculture Industry System. The aquaculture industry operates in a system composed of groups of interacting and interrelated bodies, each group performing vital functions. The core of the system is the production subsystem where all activities evolve (see figure below).

During the last 15 years, the aquaculture production subsystem has developed into a full-cycle technology for some species, i.e., prawn and milkfish, primarily due to research and development activities undertaken at the SEAFDEC Aquaculture Department. A full-cycle
technology starts from the breeding in captivity of culturable species. In the case of milkfish, the duration of broodstock development is about 5 years. With the right ratio of male to female and proper nutrition, the fish mature and spawn. In the case of prawn (*P. monodon*), maturation period is 9 to 12 months.

The fertilized eggs from the broodstock are then transferred to the hatchery where they are reared to fry size for about 30 days. The fry are reared further to fingerling or juvenile size in the nursery, e.g., in tanks, ponds or cages whichever is more economically viable.

The juveniles are then stocked in ponds, cages or pens whichever is the appropriate culture technique. The culture period is about 3 to 4 months (for milkfish and prawn). The fish are then harvested and brought to market or to processing plants.

The production subsystem cannot survive by itself. Support is needed from external forces: government assistance, technology, support industries, financing, market factors, and physical environment. These forces comprise the business environment that affects the success and failure of an aquaculture enterprise.

Government assistance. The Department of Agriculture has been entrusted to pursue the following overall fishery development objectives as enunciated in the Medium Term Development Plan (1987-1992):

1. Enhance the income and improve the quality of life of rural fishing families;
2. Attain and maintain self-sufficiency in fish;
3. Optimize utilization of fish and other aquatic resources;
4. Increase exportation of traditional and non-traditional fish and fishery export products;
5. Achieve and maintain the optimum productive condition of the country’s fishery and aquatic resources.

The Department of Agriculture, through its regional offices, is mandated to undertake fishery development projects with the private sector as its implementing partner. The government has supported research and academic institutions such as SEAFDEC/AQD and the University of the Philippines in the Visayas (UPV) to undertake basic and applied research in fisheries and aquaculture. The Department of Science and Technology has also supported fishery research undertakings through the Philippine Council for Aquatic and Marine Research and Development (PCAMRD). The International Center for Living Aquatic Resources Management (ICLARM), an international fishery research institution located in Manila is also pursuing fishery research in the country.

At present, there are about 73 school of fisheries all over the country; most if not all are government-supported. Short training programs are offered by SEAFDEC/AQD, UPV, the Technology and Livelihood Resource Center (TLRC), and the Department of Agriculture through the Bureau of Fisheries and Aquatic Resources. Some of the technicians employed in the fishery and aquaculture industry undertook training in these institutions.

Support industries. A potential investor must consider the availability in the local market of inputs such as feeds, chemicals, fertilizers, and other supplies and materials needed in the operation of an aquaculture enterprise. The growth of the aquaculture industry spawned the growth of support or allied industries such as the manufacture of fish feeds, fertilizers, and chemicals. There are more than a hundred suppliers of aquaculture supplies and materials in cities and provinces where aquaculture is a booming industry. There are also plenty of suppliers and manufacturers of equipment such as pumps, blowers, generators and laboratory kits listed in the latest Aquaculture Buyer’s Guide and the Yellow Pages of the telephone directory. The more suppliers there are, the more advantageous to the aquaculture enterprise in terms of quality products and lower prices.

There is, however, a lack of service laboratories for analysis of physico-chemical parameters, soil quality, fish disease detection and prevention and feeds analysis. Service laboratories
are needed to assist fish farmers and hatchery operators in producing quality fish.

Technology. The SEAFDEC Aquaculture Department has engaged in aquaculture research and information dissemination for the last 17 years. Appropriate and viable technologies on prawn hatchery and culture techniques have been extended to the private sector through training programs, seminars, outreach programs, and manuals which are available for sale. SEAFDEC has also developed technology on milkfish broodstock and hatchery operations which the industry can adopt.

There have been advances in sea bass broodstock and hatchery techniques developed at SEAFDEC. Also, tilapia broodstock and hatchery techniques are now being adopted by private operators in Laguna de Bay.

At present, other culturable species are being studied for broodstock development and hatchery operation. These species are siganids, mullet, grouper, and snapper.

Research on molluscs and seaweeds are also given priorities. There are big export potentials for these species. Western Europe is a potential market for mollusc (shellfishes) and Japan for seaweeds, both for food and industrial use.

Aside from SEAFDEC, other institutions such as UPV, Marine Science Institute of UP, ICLARM, and BFAR undertake continuous research and development activities to develop economically viable technologies and help solve the problems encountered by the industry.

Financing. During the mid-1980’s the Asian Development Bank (ADB) provided credit facilities to prawn and milkfish growers in Panay. The rural banks and subsequently commercial banks were used as conduits of the loans. The interest rate was 17% per year. It was reported, however, that the lending program of the ADB was not fully availed of primarily due to stringent collateral requirements. The banks required prime real estate as collaterals and only those with prime real estate properties could avail of the loan. Agricultural lands were not acceptable in fear of the Comprehensive Land Reform Program of the government.

Commercial banks were also active in lending to aquaculture enterprise. Lately, however, banks became hesitant in lending to aquaculture projects especially for prawn culture in view of the drastic decrease in export prices. There have been reports that many borrowers have defaulted in the amortization of their loans in view of low export prices.

Most commercial banks treat aquaculture loans as ordinary commercial loans where interest rates are high. The going rates as of the first quarter of 1990 ranges from 24% to 28% depending on the credit-worthiness of the borrower. The high cost of financing has contributed to the higher cost of production of prawns which affects its competitiveness in the world market. In Malaysia, it is reported that interest rate is only 7.5%.

Government loans were also made available through the Guarantee Fund for Small and Medium Enterprises and the Comprehensive Agricultural Loan Fund. The Technology and Livelihood Resource Center also provided loans to selected operators.

The small aquaculture operators are adversely affected by the lack of cheap credit facilities. Most of the small operators rely on informal sources (friends, relatives, usurers) of financing and, at times, trade credits from suppliers of input needed in the operation.

There have been reports of closures or sell-outs of aquaculture enterprises due to poor financial conditions. This has been true for both small and big operators. Other companies have merged with the more stable ones in order to save the business.

Ecological Factors. The destruction of the environment has become an international menace caused by irresponsible and uncontrolled exploitation of natural resources. Forests have been denuded without workable programs of reforestation, causing floods and siltation of low lands and marine ecosystems.

Mangrove swamps which provide nutrients and breeding places for marine fishes have been destroyed through uncontrolled conversion to aquaculture ponds. BFAR reports that there
are about 207,000 hectares of brackishwater ponds in the country, majority of which were converted mangrove areas. Reports showed that every hectare of mangrove area converted into pond reduces the harvest of fishes and crustaceans by about 0.8 to 1.4 tons per year. Although the conversion of ponds have created employment to pond workers, produced fish (milkfish and prawns), and improved the income of pond owners, it has displaced mangrove dwellers and destroyed marine flora and fauna with the discharge of toxic wastes from the ponds.

Item Three: Corporate Objectives

In defining corporate objectives, an aquaculture enterprise sets performance targets in terms of sales, profit, and return on investment. A prawn hatchery operator, for example, prepares sales projections based on the production capacity of the hatchery facilities and market demand. In setting sales projections, most hatchery operators in Iloilo based their estimates on the production capacity of their hatchery facilities, disregarding the market demand for prawn fry. In the early 1980's, the market situation for prawn fry was described as "seller's market." This means that the seller, the hatchery operator, has better bargaining power in price determination than the buyer or the prawn pond grower. The lack of market information and analysis on the part of the hatchery operators resulted in oversupply of fry in the province and the surrounding areas during the last years of the 1980's. This caused the price to go down, thus affecting the sales of the hatchery operators.

The declining sales affected the profit and the return on investments of the hatchery operators.

There are four approaches in preparing corporate objectives. They are (1) cost-oriented, (2) growth-oriented, (3) employee-oriented, and (4) community-oriented. The cost-oriented approach tends to concentrate on cost-control measures to maximize profits in a short period of time. This is true especially for small- and medium-scale operators wherein they would like to recover their investments in about a year. Feasibility studies on small- and medium-scale hatchery operations prepared in early to mid-1980 showed that payback periods were less than a year. A lot of these studies, however, failed to consider risk in terms of market saturation and ecological destruction.

The growth-oriented approach requires a longer time to realize corporate objectives. This approach must be realistic in order that lower management echelons can make their respective plans, targets, and strategies consistent with corporate objectives. Management should allocate a portion of the earnings to be reinvested in expanding facilities over a period of probably five years. The owners of the company are not after immediate recovery of their initial investment but would prefer to have part of their earnings reinvested for expansion purposes.

The employee-oriented corporate objective considers the people in the organization as an important resource in the attainment of company goals. Employees are assured of job security, opportunities for advancement, conducive working conditions, and fair management-labor relationship.

The community-oriented corporate objective considers the relationship of the organization with the immediate community. The company pays taxes to the government, provides employment, creates other business opportunities, helps in preserving the ecology, and supports community activities. In short, the company helps in the economic uplift of the community.

Item Four: Strategic Management

The causes of failure of most aquaculture enterprises can be traced to the lack of strategic management in planning and control. In the prawn industry, the drastic fall of export prices caught
most of the prawn growers “with their pants down.” They were not ready for such an eventuality
causing heavy financial drawbacks. The prices went as low as P80/kg which was lower than the
cost of production of about P90-P110/kg. In order to stay afloat in the business, cost control of
inputs especially feeds is a must. Lack of production techniques and management expertise
resulted in high cost of production.

The prawn hatchery operators were also affected. Most of these operators went into the
hatchery business without strong technological back-up, heavily relying on their technicians. The
proliferation of hatcheries resulted in price cutthroat competition pushing the price to very low
levels which could barely cover the cost of production, thus, forcing entrepreneurs to stop
operations.

Strategic management seeks to:
1. Establish the position of the organization in relation to the business system and identify
the key components which will affect the performance of the company;
2. Accurately identify the strengths and weaknesses of the company;
3. Specify the long-term goals of the organization;
4. Formulate the business plans necessary to attain the goals;
5. Develop the business policy and plans needed to deliver the targets;
6. Execute the business strategies and plans as agreed;
7. Create a control system which permits an evaluation of actual versus planned perform­
ance. This system should be able to identify causes of shortfalls and make the necessary
corrective measures.

Item Five: Growth Strategies

Although the bottom line goal of any business organization is to make profit, a portion of
the profit must be plowed back in order for the company to grow. Even in the planning stage, the
manager should project future expansion of the company operations.

There are four ways of achieving growth of a business organization:
1. Expand sales on current products.
2. Expand into related business with existing products.
3. Introduce new products.
4. Introduce new products in related business.

An example in an aquaculture enterprise is a milkfish grower who traditionally sells all his
produce in the fish market. He expands his market by tapping supermarkets by selling deboned
milkfish. The deboned milkfish becomes a value-added product since it has undergone some
kind of processing which has resulted in an increase in its value. Another way of expanding the
operation of the milkfish grower is to polyculture with other species such as crabs or prawns. By
increasing his product line, he can tap other markets such as restaurants and hotels.

Another growth strategy is diversification through integration or conglomeration. Integra­
tional diversification can be done vertically or horizontally in the business spectrum. In the
aquaculture industry, a prawn grower can integrate horizontally by going backwards to breeding
and hatchery operation. This strategy will assure the prawn grower of continuous supply of good
quality fry for stocking in his ponds. Excess production can be sold to other prawn growers. He
can also move forward by going into marketing and processing of his prawns produced in his farm
as well as other farms.

If he decides to expand his operation through vertical integration, he can increase the size
of his farm and go to culture of other species such as sea bass, groupers, and snappers.

As his organization grow big, he can expand further through conglomeration. As he has
established a strong foothold in the aquaculture industry, he may go into other business such as
fish feed milling, production of aquaculture machineries, or probably other types of food
businesses.
Item Six: Record Keeping for Fish Farms

The best source of economic data is farm records from either commercial, pilot, or experimental farms. Although there are many forms of farm records, most of them simply list the input and output of the farm operation both in physical (kilogram, ton, pound) and value (units of money) terms. The collection and analysis of data on costs and earnings based on farm records provide the information necessary to (1) determine the relative profitability of various production techniques or systems, (2) compare the productivity of major inputs such as land, labor, and capital with that of alternative production activities, and (3) improve the efficiency of the farm operations.

Input Records

These are variable inputs or costs which vary with the level of production such as fry, feeds, fertilizers, labor, and pesticides.

Output Records

Output records should show in detail the following: date of harvesting, species harvested (with its amount and unit price), and the disposition of the product.

Gross revenue should include cash and credit sales of the products and the imputed values of the quantities consumed on the farm (imputed values may be estimated by using the market price of the product). Change in the value of the inventory should also be included in the computation of gross revenue.

Any business, large or small, public or private, should maintain an efficient record keeping system. All business transactions should be recorded in full in paper. Many businesses/projects fail because of inadequate record keeping.

Adequate records can provide answers to the following questions: (a) How much profit is the business/project earning? (b) How much is the business/project worth? (c) How much do credit customers owe the business? (receivables) (d) How much does the business owe its creditors? (liabilities) (e) How much should the business pay for tax, fuel, electricity, and water, etc.?}

LINKING FARM AND POND FOR SUSTAINABLE FARMING

Dr. Clive Lightfoot, a Farming Systems Specialist at the International Center for Living Aquatic Resources Management (ICLARM), recommends integrating aquaculture with agriculture as a way to intensify farming while at the same time improving the environment for farming. Aquaculture or fish farming provides a way to use agricultural by-products to make marginal lands more productive. Fish convert plant and animal waste into high-value protein.

For example, in Malawi, southern Africa, analyses of the uses and characteristics of different land types suggest many ways to combine land and pond ‘crops’. Pond mud could be used to revitalize vegetable plots. Pond water could irrigate vegetables and water animals. Animal manure, along with crop residues, weeds, leaves and rotten fruit and vegetables could fertilize ponds as well as the soil. Other crop by-products, like corn and rice bran, could also be