THE BIOLOGY AND ECOLOGY OF LAKE VICTORIA FISHES:

THEIR DEVELOPMENT AND MANAGEMENT

(UGANDAN VERSION)

Edited By: Ogutu-Ohwayo, R., and Wandera S.B.,
National Agricultural Research Organisation,
Fisheries Research Institute,
P. O. Box 343, Jinja, Uganda

December 2000
<table>
<thead>
<tr>
<th>Title of Chapter and Authors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fishes and fisheries of the Victoria and Kyoga lake basins. [Ogutu-Ohwayo, R. &amp;</td>
<td></td>
</tr>
<tr>
<td>Wandera, S.B.]</td>
<td></td>
</tr>
<tr>
<td>2 The biology, ecology and fishery of (Mukene) Rastrineobola argentea [Wandera S.B.]</td>
<td></td>
</tr>
<tr>
<td>3 The biology, ecology and impact of Nile perch, Lates niloticus in lakes Victoria, Kyoga</td>
<td></td>
</tr>
<tr>
<td>and Nabugabo and the future of the fisheries [Ogutu-Ohwayo, R.]</td>
<td></td>
</tr>
<tr>
<td>4 The biology, ecology and impact of introduced tilapiines especially the Nile tilapia,</td>
<td></td>
</tr>
<tr>
<td>Oreochromis niloticus in lakes Victoria and Kyoga [Nagayi, J.]</td>
<td></td>
</tr>
<tr>
<td>5 The biology and ecology of native-non-cichlids in the Victoria and Kyoga Lake basins.</td>
<td></td>
</tr>
<tr>
<td>[Mbabazi, D. and Taabu-Munyaho, A.]</td>
<td></td>
</tr>
<tr>
<td>6 Population characteristics of Oreochromis esculentus in the Victoria and Kyoga lake</td>
<td></td>
</tr>
<tr>
<td>basins in -relation to conservation and restoration of the species. [Nagayi, J.]</td>
<td></td>
</tr>
<tr>
<td>7 The Food of haplochromine species surviving in the nearshore stations of Lake Victoria</td>
<td></td>
</tr>
<tr>
<td>with specific reference to the Napoleon Gulf. [Namulemo, G.]</td>
<td></td>
</tr>
<tr>
<td>8 Trophic structure and diversity of haplochromines among Kyoga minor lakes [Mbabazi,</td>
<td></td>
</tr>
<tr>
<td>D.]</td>
<td></td>
</tr>
<tr>
<td>9 Trophic interrelationships and food-webs among fishes in the Victoria and Kyoga lake</td>
<td></td>
</tr>
<tr>
<td>basins [Mbabazi, D.]</td>
<td></td>
</tr>
<tr>
<td>10 The role of Yssichromis species in the trophic ecology and food-webs of Lake Victoria</td>
<td></td>
</tr>
<tr>
<td>[Ebong, I., Wandera, S.B. and Ogutu-Ohwayo, R.]</td>
<td></td>
</tr>
<tr>
<td>11 Impact of fishing gears and methods and the consequences of using different mesh sizes</td>
<td></td>
</tr>
<tr>
<td>of gillnets on the fisheries and on biodiversity of lakes Victoria and Kyoga [Ogutu-</td>
<td></td>
</tr>
<tr>
<td>Ohwayo, R., Wandera, S.B.]</td>
<td></td>
</tr>
<tr>
<td>12 Management of the fishes and fisheries of the Victoria and Kyoga lake basins [Ogutu-</td>
<td></td>
</tr>
<tr>
<td>Ohwayo, R., Wandera S.B., Namulemo, G., Mbabazi, D.]</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 9

Trophic Interrelationships and Food-Webs among the Fishes in Ecosystems of the Victoria and Kyoga Lake Basin.

Mbabi D., R. Ogutu-Ohwayo, S.B Wandera and G. Namulemo
Fisheries Research Institute,
P.O Box 343,
Jinja

Abstract

The Victoria and Kyoga lake basins had a high fish species diversity with many fish species that were found only in these lakes. Two Tilapiines species Oreochromis esculentus and Oreochromis variabilis were the most important commercial species in these lakes and were found nowhere else on earth except in the Victoria and Kyoga lake basins (Graham 1929, Worthington 1929). Lakes Kyoga and Nabugabo also had endemic haplochromine species (Worthington 1929, Trewavas 1933, Greenwood 1965, 1966). As stocks of introduced species increased, stocks of most of the native species declined rapidly or disappeared altogether. The study was carried out on Lakes Victoria and Kyoga, River Nile, some selected satellite lakes from the two basins namely Lakes Mburo, Kachera, Wamala, Kayanja, Kayugi, Nabugabo, Victoria, Victoria nile and River Sio(Victoria lake basin). Lakes Kyoga (Iyingo), Nawampasa, Nakuwa, Gigati, Nyaguo, Agu, Kawi and Lemwa (Kyoga lake basin).

Species composition and relative abundance of fishes were estimated by determining the overall average total number of each species encountered. A trophic consists of species using the same food category. Shannon-Weaver Index of diversity H' (Pielou, 1969) and number of trophic groups, were used to estimate the Trophic diversity of various fish species in the lakes. Food analysis has been done on some fishes in some of the sampled lakes and is still going on, on remaining fishes and in some lakes.

Generally fish ingested detritus, Spirulina, Melosira, filamentous algae, Planktolyngbya, Microcystis, Anabaena, Merismopedia, Spirogyra, higher plant material, rotifers, Ostracodes, Chironomid larvae and pupae, Choavorus larvae, Odonata, Povilla, Insect remains, Caridina, fish eggs and fish. Eight trophic groups were identified from these food items ingested. These included detritivores, algae eaters, higher plant eaters, zooplanktivores, insectivores, molluscivores, prawn eaters, paedophages and piscivores. Trophic diversity by number of trophic groups was highest in Lake Kyoga (6) followed by lakes Kayugi, Nabugabo, River Nile and Mburo (3) and the lowest number was recorded in kachera (2).

Background

The Victoria and Kyoga lake basins had a high fish species diversity with many fish species that were found only in these lakes. Two Tilapiines species Oreochromis esculentus and Oreochromis variabilis were the most important commercial species in these lakes and were found nowhere else on earth except in the Victoria and Kyoga lake basins (Graham 1929, Worthington 1929). Many other species, such as Protopterus aethiopicus, Bagrus docmac, Clarias gariepinus, Barbus spp, monnyrids, Synodontis spp, Schilbe intermedius and
Rastrineobola argentea, were also abundant (Graham 1929, Worthington 1929, 1932a, Kudhongania & Cordone 1974). The rivers of the Victoria lake basin had a number of riverine species the most commercially important of which were *Labeo victorianus* and *Barbus altianalis*. Lake Victoria contained over 300 species belonging to one group the haplochromine cichlids over 99% of which were endemic (Witte et al. 1992 a, b). Lakes Kyoga and Nabugabo also had endemic haplochromine species (Worthington 1929, Trewavas 1933, Greenwood 1965, 1966). The fishes occupied virtually all trophic levels and played an important role in the flow of organic matter and overall ecological efficiency of these lakes. The fishes were important as human food and provided outstanding opportunities for studying evolutionary processes and community ecology (Lowe-Connell, 1987).

By the 1960's, stocks of the native tilapiines and other large species of Lake Victoria had been reduced by overfishing (Jackson 1971, Ogutu-Ohwayo 1990a). Nile perch and four tilapiine species were introduced into many of the lakes in the basin, including lakes Victoria and Kyoga in 1950's and early 1960's to improve stocks of the declining fishery. As stocks of introduced species increased, stocks of most of the native species declined rapidly or disappeared altogether. Of the more than 300 native species, only *Rastrineobola argentea* (Mukene) remained abundant (Ogutu-Ohwayo 1990c). Haplochromines dropped from about 80% of the fish biomass in Lake Victoria in 1970s to less than 1% in 1980s, and about 200 species are feared to have become extinct. These haplochromines were important as food and were of medical, scientific and ecological value. They occupied all trophic levels and played a major role in the flow of energy in the ecosystem. They were crucial in maintaining the ecosystem that supported other food fishes, as well as the high biodiversity associated with the lake basin. Studies of haplochromines played a major role in illustrating how organisms undergo adaptive radiation to produce new species, and how a trophically diverse assemblage can efficiently utilize an ecosystem.

As a result of overfishing and introduction of exotic fishes, populations of most of the native species declined and many species became extinct (Witte et al. 1992 a, b). The original decline in fish stocks was due to overfishing (Jackson 1971, Ogutu - Ohwayo 1990 a) but the recent and more drastic decline has been due to predation by the introduced Nile perch and overall environmental degradation (Ogari & Dadzie 1988, Ligtvoet & Mkurnbo 1990, Ogutu - Ohwayo 1990 b, Witte et al. 1992 a, b).

The loss of species and trophic diversity, and associated alterations in food webs have been accompanied by more frequent algal blooms and deoxygenation of the hypolimnion, which sometimes have been associated with mass fish kills in Lake Victoria (Ochumba & Kibara 1989). The accumulation of the excess organic matter is an indication that much of the organic matter produced in the lake is not being channelled efficiently through the food web. The native fishes had occupied virtually all trophic levels, including phytoplanktivores, zooplanktivores, insectivores, molluscivores, detritivores, piscivores and maintained an efficient flow of organic matter in the system. The depletion in stocks of this trophically diverse fish community by Nile perch changed the food web of the lake and seems to have reduced grazing pressure and the overall ecological efficiency of the ecosystem in the lakes.
Study Objectives

The overall objective of this study was to rectify the serious lack of knowledge on trophic ecology in the Victoria and Kyoga lake basins. This was achieved by specifically examining, species composition of fishes, the food and trophic diversity of fishes in the different lakes in the Victoria and Kyoga lake basins and how this compares between lakes and with lakes Victoria and Kyoga.

Study Area, Materials and Methods

Study Area

The study was carried out on Lakes Victoria and Kyoga, River Nile, some selected satellite lakes from the two basins namely Lakes Mburo, Kachera, Wamala, Kayanja, Kayugi, Nabugabo, Victoria, Victoria nile and River Sio (Victoria lake basin). Lakes Kyoga (Iyingo), Nawampasa, Nakuwa, Gigati, Nyaguo, Agu, Kawi and Lemwa (Kyoga lake basin).

Materials and Methods

Fish were collected using experimental gill nets, locally constructed basket traps sometimes from commercial catches. Three fleets of gill nets were set at one selected station at various distances from the shore line to the open water on every lake and some three or four selected stations on the bigger lakes. On retrieval fish were sorted into their taxonomic groups to species level whenever possible and the number and weight of each taxa recorded. The bigger fishes were cut open, their stomachs dissected out and their degree of fullness determined as 1(full), 3/4, 1/2, 1/4, <1/4 or 0 (empty). The stomachs were labelled and preserved for later laboratory analysis. The fishes not identified in the field especially haplochromines were preserved in 10% formaldehyde solution, labelled with date and habitat of capture and transported to Fisheries Research Institute (FIRI) laboratory where further identifications and food analysis were done.

In the laboratory fishes not identified in the field were sorted into taxonomic groups to genus or species level where possible. If a fish could not exactly fit the described characters it was assigned a "chieronym". Morphological characteristics of small fishes were examined with the help of a binocular microscope. The species that were not identified in the laboratory were compared with specimens of described species present in FIRI museum.

The preserved fishes were treated as follows:

- The fish were cut open, the stomach of each fish dissected out and its degree of fullness determined. Both the preserved stomachs and those got from the preserved fish were slit open and the contents emptied on to a petri dish, flooded with water and examined first under a binocular microscope and later on a slide under a compound microscope. The food items were sorted and identified as far as possible and estimated as percentage through judgement by eye. The percentages were then allotted points 0, 1, 2, 4, 8 and 16 depending on the relative importance of the food item in the stomach according to Hynes (1950).
Species composition and relative abundance of fishes were estimated by determining the overall average total number of each species encountered. The percentage contribution by number of each species were calculated by dividing the total number of each species by the total number of all the species, multiplied by 100. The data were presented in tabular form. The food items were classified into related groups and the dominant food category was taken as decisive of the Trophic classification (Witte, 1981). A trophic consists of species using the same food category. Shannon-Weaver Index of diversity H' (Pielou, 1969) and number of trophic groups, were used to estimate the Trophic diversity of various fish species in the lakes.

Results

Food analysis has been done on some fishes in some of the sampled lakes and is still going on, on remaining fishes and in some lakes.

Mburo

Overall nine fish species, five non-haplochromines and four haplochromines were encountered in Lake Mburo. The non-haplochromines included Oreoehromis esculentus, O. niloticus, O. leueostietus, Clarias gariepinus and Protopterus aethiopicus. The haplochromines included Harpagoehromis squamipinus, Astatotilapia nubila, Astatotilapia aeneoeolor, and Astatoreehromis aUuaudii. Out of these species only four non haplochromine species have been examined and contained food contents. These included O. leueostietus, C. gariepinus, O. niloticus and P. aethiopicus (Fig. 3).

Kachera

Overall twelve fish species, seven non-haplochromines and four haplochromines were encountered in Lake Kachera. The non-haplochromines included Oreoehromis esculentus, O. leueostietus, O. nilotieus, Protopterus aethiopicus, Clarias gariepinus, Clarias lioeephalus and Tilapia zillii. The haplochromines included Harpagoehromis squamipinus, Astatotilapia nubila, Astatotilapia spp and Astatoreehromis aUuaudii. Out of these species only four non haplochromine species have been examined and contained food contents. These included O. leueostietus, O. esculentus, C. gariepinus and O. niloticus (Fig. 4).

Kayugi

Overall eleven fish species, six non-haplochromines and five haplochromines were encountered in Lake Kayugi. The non-haplochromines included Brycinus sadleri, Barbus kersterni, Gnathonemus victoriae, Oreoehromis esculentus, Petroeephalus eatastoma, and Protopterus aethiopicus. The haplochromines included Astatotilapia velifer, Astatotilapia nubila, Gaurochromis simpsoni, Astatoreehromis aUuaudii and Prognathoeohromis venator. Out of these species only five non haplochromine species have been examined and contained food contents. These included O. esculentus, O. leueostietus, G. victoriae, C. gariepinus, and P. aethiopicus (Fig. 5).
Nabugabo

Overall sixteen fish species, twelve non-haplochromines and four haplochromines were encountered in Lake Nabugabo. The non-haplochromines included Brycinus sadleri, Barbus kersterni, Gnathonemus longibarbis, L. niloticus, Mercusenius grahami, O. rendalli, O. leucostictus, O. niloticus, P. aethiopicus, Schilbe intermedius, Synodontis afrofischi and T. zillii. The haplochromines included Astatotilapia velifer, Astatotilapia nubila, Gaurochromis simpsoni, Astatorechromis alluaudii and Prognathochromis venator. Out of these species only seven non haplochromine species have been examined and contained food contents. These included O. esculentus, O. leucostictus, G. victoriae, C. gariepinus and P. aethiopicus (Fig. 6).

Victoria Nile

Overall six non-haplochromines and some haplochromines were encountered in Victoria Nile. The non-haplochromines included M kannume, L. niloticus, B. altianalis, O. niloticus and T. Zillii. Out of these species only three non haplochromine species have been examined and contained food contents. These included L. niloticus, O. niloticus and M kannume (Fig. 7).

River Sio

Overall fourteen non-haplochromines and one genus of haplochromines were encountered in Victoria Nile. The non-haplochromines included M Grahami, Barbus jacksonii, B. Sadleri, S. victoriae, L. niloticus, S. afrofischeri, Brycinus jacksonii, C. gariepinus, S. intermedius, O. leucostictus, Schilbe intermedius, P. aethiopicus, Clarias gariepinus, Labeo victorianus, G. longibarbis, B. altianalis, P. catastoma and Mormyrus kannume. The haplochromines encountered were of Ptyochromis spp. None of these species has been examined for food.

Kyoga

Overall thirty two fish species, eighteen non-haplochromines and fourteen haplochromines were encountered in Lake Kyoga. The non-haplochromines included L. niloticus, Brycinus sadleri, Gnathonemus victoriae, O. niloticus, S. victoriae, Synodontis afrofischeri, Mormyrus macrocephalus, T. zillii, O. leucostictus, Schilbe intermedius, P. aethiopicus, Clarias gariepinus, Labeo victorianus, G. longibarbis, B. altianalis, P. catastoma and Mormyrus kannume. The haplochromines included Paralabidochromis "blackpara", Astatotilapia nubila, Pssamochromis "shovelmouth", Astatotilapia "kyogaastato", Xystichromis "flameback", Paralabidochromis "earthquake", Prognathochromis guiarti, Yssichromis kyogazooplanktivore, Xystichromis phytophagus, A. alluaudi, Lipochromis parvidens, Lipochromis "blackcryptodon", Haplochromis luidus and Gaurochromis spp. Out of these species only six non haplochromine species and eight haplochromine species have been examined and contained food contents. These included L. niloticus, B. altianalis, Mercusenius grahami, P. aethiopicus, S. victoriae and S. intermedius. (Fig. 8). The haplochromines included P. "blackpara", A. nubila, P. "shovelmouth", A. "kyogaastato", X "flameback", P. "earthquake", Y kyogazooplanktivore, X phytophagus and A. alluaudi.
So far results obtained indicate that generally fish ingested detritus, *Spirulina, Melosira*, filamentous algae, *Planktolyngbya, Microcysists, Anabaena, Merismopedia, Spirogyra*, higher plant material, rotifers, Ostracodes, Chironomid larvae and pupae, Choaborus larvae, *Odonata, Povilla*, Insect remains, *Caridina*, fish eggs and fish. These food items were grouped into 8 categories for purposes of trophic classification. These included detritus, algae, higher plant material, zooplankton, insects, molluscs, prawns, fish eggs and fish. The percentage contribution of food categories in diet of different fishes in different lakes (Figs 3, 4, 5, 6, 7, 8 and 9.
Fig. 3  Percentage contribution of food category by points to the diet of the different fishes from Lake Mburo
Fig. 4  Percentage contribution of food category by points to the diet of the different fishes from Lake Kachera
Fig 5 Percentage contribution of food category by points to the diet of the different fishes from Lake Kayugi
Fig. 6 Percentage contribution of food category by points to the diet of the different fishes from Lake Nabugabo
Fig 7 Percentage contribution of food category by points to the diet of the different fishes from Victoria Nile
Fig. 8 Percentage contribution of food category by points to the diet of the different fishes from Lake Kyoga

- *Lates niloticus*
- *Schilbe intermedius*
- *Mecusenius grahami*
- *Barbus altianalis*
- *Synodontis victoriae*
- *Proopterus aethiopicus*

Food category

Detritus  Algae  Higher plant material  Zooplankton  Insects  Prawns  Fish eggs  Fish
Trophic diversity by number of trophic groups varied between lakes. Lake Kyoga (6) had the highest followed by lakes Kayugi, Nabugabo, River Nile and Mburo (3) and the lowest number was recorded in kachera (2) (Fig 9).
Fig 9 Comparison of trophic diversity by number of trophic groups between lakes
References


