دانشگاه آزاد اسلامی
واحد علوم و تحقیقات

رساله دکتری رشته علوم محيط زیست - تنوع زیستی (Ph.D)

موضوع

Mnemiopsis leidyi
بورسی اثرات رقابت نفوذیه ای میان شانه دار مهاجم دریای خزر
وماهیان کبک در آب های سواحل جنوبی دریای خزر

استاد راهنما
جناب آقای دکتر عباس اسماعیلی

استاد مشاور
سردار خانم دکتر بروین فرشچی

نگارش
فریبا درویشی

سال تحقیقی ۱۳۸۱-۸۲
فهرست

عنوان

چکیده

مقدمه

فصل اول: کلیات

1-1- دریای خزر

1-1-1- موقعیت جغرافیایی دریای خزر

1-1-2- تاریخچه و منشا طبیعی دریای خزر

1-1-3- جغرافیای طبیعی دریای خزر

1-1-4- وزنگی های فیزیکی و شیمیایی دریای خزر

1-1-5- وزنگی های بومی شناختی دریای خزر

Clupeonella, 1-2- کلیکا ماهی‌ها

(Clupeonella cultriventris) 1-2-1- کلیکا معمولی

(Clupeonella engrauliformis) 1-2-2- کلیکا انگچوی

(Clupeonella grimmi) 1-2-3- کلیکای قشن درشت

1-3-1- نتایج نهایی دریای

Mnemiopsis leidyi 1-5-1- شناه دران
فصل دوم: مطالعات و تجزیه و تحلیل داده‌ها

1- ماهی‌های بسیاری در دی‌بای خزر

0.7- ماهی‌های بسیاری در دی‌بای خزر

0.6- آثار اقتصادی حضور M. leidy

0.5- آثار اقتصادی حضور M. leidy

0.4- آثار اقتصادی حضور M. leidy

0.3- آثار اقتصادی حضور M. leidy

0.2- آثار اقتصادی حضور M. leidy

0.1- آثار اقتصادی حضور M. leidy

فصل چهارم: آمار و پیشنهادات

0.1- آمار و پیشنهادات
بر اکوسبستم دریای خزر. M. leidyi

5- کنترل جمعیت در دریای خزر

4- راهکارهای کنترل بیولوژیکی جمعیت M. leidyi در دریای خزر و تجربه دریای سیاه

6- ویژگی های B. ovata و بیش بینی احتمالی آن‌ها

6- جمع بندی و راه‌های بیش‌هایات

- منابع فارسی

- منابع انگلیسی

- ضمیمه

ضمیمه - 1- کلیات دریای خزر

ضمیمه - 2- جداول آماری

ضمیمه - 3- ماهیان شکارچی Mnemiopsis leidyi

ضمیمه - 4- جدول سرویا (Acronmy)

- جکویه انگلیسی
جذور Mnemiopsis leidyi تظهر في مياه المحيط الهادئ، حيث وُجدت بشكل طبيعي في مياه البحار في جميع أنحاء العالم. هذه الجذور تتركز بشكل رئيسي في مياه ساحلية، حيث يوجد فيها الكثير من المواد العضوية.

الإحترام: من خلال التفاعلات الطبيعية، يمكن أن تساهم Mnemiopsis leidyi في تحقيق توازن في البيئة البحرية. يمكن أن تساعد في تحسين توازن المغذيات وتعزز التنوع البيولوجي.

يرجى ملاحظةً أن هذه المعلومات قد تحتوي على بعض التحيزات الطبيعية وتكونت بشكل عام لأجل تحسين الحفاظ على البيئة البحرية.

كلمات كليديّة: Mnemiopsis leidyi, توازن المواسم, البيئة البحرية.
مقدمة

كونه هار مهاجم أفت، اکوسيستم های بومی به حساب می آید. این جاروران با به صورت سایبانی از کنده و/or کنده روبه‌روی بذیرعه‌ی می‌شوند. با توجه به منابع بی‌خیالی، فضای و نور، باگونه‌ی های بومی رفتاری کنده و/or کنده دو راهکری در انتقال صفات تایلرگزارده و سبب از میزان رفتاری سیپاری از کنده ما شوند. روایت تهاجم کنده‌ها به وجود ایکوسيستم های مختلف به زمان‌های بسیار دور بارز می‌گردد. نمونه‌ای از نهایت‌سال‌های اخیر، رود غونه‌ای از شانه‌گردن به دریای بیش و پس از آن به دریای خزر است.

شانه داران کروه‌ی از جانوران آبی می‌باشد که تقسیم‌بندی در سرسبز آب هنای جهان پراکنشی و سیبیکی از کنده‌های شانه داران است که بومی مناطق ساحلی، خوره‌ها و مصب‌های "Mnemiopsis leidyi" قاز کرده‌اند. با ویژگی‌های "M. leidyi" توان تولید مثل و توانایی یونیتری یک‌سیلیک دارد و مستعد است که به مناطق جدید مشتق شود. با استفاده مسیرهای آبی، به ساکنی به محلی‌های آبی بذیرعه‌ی مانند دریای خزر، دریای سیاه و دریای آزور وارد و یافت. به تکنیک‌های کنده.

نحستین بار در سال 1982، کنده‌ای از این جارور در بازه‌ی زیادی از طریق آب توپار کشتی‌ها وارد دریای سیاه شد. سابقه حضور "M. leidyi" در سواحل شمالي دریای خزر به اواخر نوامبر 1999 و در سواحل جنوبی به بهمن ماه 1367 می‌رسد. به علت مساعد بوت سیاه‌پوش، شعبه‌ی زیستی برای این جاندار و نیز نرخ تولید مثل و تکنیک بسیار زیادی، این کنده مهاجم به سرعت در سرسبز دریای خزر پراکنش یافته و درکردن جمعیت آن، در حال حاضر، افزایش قابل ملاحظه‌ای نشان داده است. این جاندار امروزه به صورت کنده‌ای بی‌مصرف، "Mnemiopsis leidyi" نامیده می‌شود. و ساکنی در این دریا بر اساس نظر کمی و کیفی، دسته‌ی جمعیتی فعال در این دریا ندارد.

همان‌طور که رود این مهمان ناخوانت به دریای خزر، سیبیکی مسیرهای ماهیان دارای ارزش تجاری کاهش یافته و در نتیجه این نوسان خسارات سیبیکی به صورت شیلات کشکور ایران و سایر کشورهای همسایه این دریا و رود است.

خاویار دریای خزر که به طلا سیاه معروف است، محصول با ارزش است که در سبد صادرات غیر به جمعیت تأم ماهیان دریای خزر، "Mnemiopsis leidyi" تغذیه می‌گردد. با توجه به حضور نوین کنیور ما جابه‌جایی سیبیکی در دیوان حضرت یرموک.
در تربیک با عوامل دیگری از قبیل آلودگی دریا؛ برهم یکی زیستگاه ماهیان خاوی‌داری تغییر مسیر، حجم و کیفیت آب و رودخانه های اطراف و عوامل دیگری از این نوع می‌توانند زمینه‌سازی‌های ایمن کونه ارزشمند را فراهم سازند.

کاهش صید کیلکا ماهیان در نتیجه ظهور این جاندار بیکاته سبب گریختگی است. با استفاده از برنامه‌های زیر، از ماهی و گروه‌هایی که از گونه‌های مختلف، عوامل دیگر و به وسیله‌های نجات و بهبود ماهی و کاهش زیستی و از جمله استحکام ضروری‌ترین مهارت‌های انجام می‌شود. این مهارت‌ها شامل ارتباط بین افراد، کیفیت و انتقال ایمن کونه به سوخت و انتقال به مشاهد کارگر و انتقال به مشاهد کارگر و بهره‌گیری از مشاهد کارگر و بهره‌گیری از مشاهد کارگر و انتقال به مشاهد کارگر و بهره‌گیری از مشاهد کارگر و بهره‌گیری از مشاهد کارگر و انتقال به مشاهد کارگر و بهره‌گیری از مشاهد کارگر و بهره‌گیری از مشاهد کارگر و بهره‌گیری از مشاهده است.

با توجه به کاهش صید کیلکا ماهیان در دیواری خزر و از ظهور M. leidyی و به وسیله منظور بررسی G. chungii، نسبت این اثرات در بر جمعیت کیلکا ماهیان و تعیین میزان رفتار غذایی بین انسان در آب‌های سواحل جنوبی (سواحل مارنگان) در دیواری خزر این تحقیق انجام گرفته است.

در فصل اول این رسانه با استفاده از کتاب و مقالات مختلف و نیز با استحکام در سایت‌های اینترنتی کلیاتی در پاره‌دارنده خزر و یاکجی‌های مختلف آن به انجام پنجم آزمایشات و یزدی‌های زیستی و اکولوژیکی در قونه و یک زیر گونه کیلکا موجود در دریای خزر انجام شده است.

در ادامه این فصل مبهمی بر بیان شده است.

M. leidyی نهایت در دیوازی کشش و سپس یزدی و یزدی و اکولوژیکی فصل دوم به مطالعات میدانی و آزمایشگاهی می‌پردازد.

در فصل دوم به مطالعات میدانی و آزمایشگاهی می‌پردازد.

در این مطالعه در محدوده آب‌های استان مارنگان با فرآیند‌های مشابه انجام شده است.

نمونه‌برداری از شرائح‌های درون از اعماق 0.50 و 15 متری موازی ساحل به عمل آمده و همگونی از کیلکا ماهیانی که در بندر صبایی بابل‌سرا صبید می‌شوند نیز نمونه‌های دستگاه گردو برداشته شده است.

نمونه‌ها در آزمایشگاه مطالعه و تغییر حاصل نزاین مارکه به‌کمک با رسم گروه‌های نمودارها در به‌هم‌راه تصویری Shoener و Faisal و از آن با استفاده از نمایه‌های تغذیه‌ای رفتار تغذیه‌ای میان ایشون دو جاندار M. leidyی می‌گردد و در دستگاه گردو با میان‌کن که در آزمایشگاه ماهی کیلکا آمیزی و می‌گردد و در دستگاه گردو با میان‌کن که در آزمایشگاه ماهی کیلکا آمیزی و
داده‌های دیروزی از معاونت صید اداره کل شباهت استان مازندران و نیز آمار موجود در سالنامه شبیلات ایران، اثرات اقتصادی حضور فصل چهارم به تجربه و تحلیل نتایج حاصل از این تحقیق برداخته و با اثبات رفتار تغذیه‌ای میان M. leidyi و کیلکی‌های ویروس‌ی شناسایی برای کنترل میزان و جمعیت این شرانه در مراکز ارائه شده است. M. leidyi در ارائه پیشنهادات علاوه بر مطالعات حاصل از این تحقیق، تجربیات به کار رفته در درمان‌های سیستان نیز مورد استفاده قرار گرفته است.
فصل أول
كليات
1-1- دریای خزر

دریای خزر بزرگترین و پرجمع‌نمای گسترده‌ای است که در محدوده میانی‌رود سطح آسیا و اروپا در شرق سلسله جبال قفقاز و شمال شرقی کوه‌های البرز قرار دارد.

(Doumont, 1995; 1998)

شکل 1-1: نقشه قدیمی دریای خزر

کشتی نوح کوه آراوات

(Noah’s Ark on Mount Ararat)

The Catalan Atlas
Spain, Majorca 14th century.

وجود زیستگاه‌های متنوع از رودخانه‌های بزرگ تا سیستم‌های تالاب‌ها و وسیع، تنوع غنی جانوری و کبایر و تولید یکی‌ضربه‌ای طبیعی. این را به سختی می‌کند. دریای خزر در مسیر مهاجرت میلیون‌ها پرندگان مهاجر قرار دارد. و پراگاه‌ها باعث تعدادی از پرندگان نادر و در معرض خطر جهان عرضه می‌کنند.

(Mamev et al. 2002)

تغییر رژیم رودخانه‌ها، افزایش سطح آب، از میان رفت و دریاچه‌ها و مکان‌های تالاب‌ها و میلیون‌ها پرندگان و مکان‌های اکوسیستمی می‌باشد.

(Doumont 1995; 1998; Mamev et al. 2002; CaspNRIKH, 2001; Stone, R. 2002)

شناخت وپژوهش های بوم شناختی، فیزیکشنیمیا، جغرافیایی، توبوگرافیکی و زمین شناختی دریای خزر کمک شایانی به مدیریت اصلی و صحیح این اکوسیستم با ارزش می‌نماید (پیوست 1).
١١-١- موقعية جغرافية دربيا خزر

derبيا خزر يقع في غرب روسيا، بين حوض فارا في contaminants of the
قارة آسيا وشمال قارة أوروبا، يقع في ١٠٣٠ كم جنوب غرب موسكو.

٢- ١- طول خط ساحلي

<table>
<thead>
<tr>
<th>ملاحظات</th>
<th>طول خط ساحلي (كم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>كل معرق ١٠٠ كم</td>
<td>١٠٠ كم</td>
</tr>
</tbody>
</table>

جدول ١- طول ساحل كشورية همسيا برا ناشئة من ده.

٢- ١- تاريخه و منشأ طبيعة:

دربيا خزر يحتوي على مصادر طبيعية من المياه التي تستخدم في الزراعة والري. عدد مصادر الكرتون (مليون متر مكعب) يبلغ ١٢٠ مقاطع ومصادر الصخور (مليون متر المكعب) يبلغ ٨٠٠ مقاطع.

٢- ١- تأثيره و منشأ طبيعة:
رویداد مهم (yrs B.P.)

<table>
<thead>
<tr>
<th>دوران زمین شناسی</th>
<th>10.1 x 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>دریای بکاره‌جز خزر - سیاه</td>
<td>میوسن</td>
</tr>
<tr>
<td>جدایی دریای خزر از دریای سیاه</td>
<td>پلیوسن 2-3</td>
</tr>
<tr>
<td>تکامل حیات جانوری خاص دریای خزر</td>
<td>پلیستوسن 3-4</td>
</tr>
</tbody>
</table>

جدول 2- تاریخچه تکامل دریای خزر، منبع: Dumont,1998

3-1-1-1- جغرافیای طبیعی دریای خزر

دریای خزر کنونی در دوران قبیل در قاره ای در مورد اروپا و آسیا واقع است. این دریا به هیچ یک از اقیانوس‌های جهان راه ندارد و سطح آن در حال حاضر حدود 275 m پایین‌تر از سطح آب هنگام زرده می‌باشد.

دریای خزر در میان کلیه اکوسیستم‌های آبی جهان یک اکوسیستم "واحد" است. سه ویژگی اصلی آن عمق و شوری سبب به وجود آمدن سه حوضه آبی مجزا شده‌اند که در یک بندی واحد وجود دارند اما از یکدیگر بسیار متفاوت می‌باشند (شکل 2-3). بخش شمالی حدود 40% سطح کل دریا را می‌پوشاند. بخش بسیار کم عمق است (m 6-5), مساحت آن 10000 km² و حجم آن 50 کلم حجم آب می‌باشد.

بخش ماینی عمیق است، میانگین عمق 190 m بوده و 37/9% حجم آب دریای خزر را به خود اختصاص داده است. مساحت این بخش 138000 km² می‌باشد. بخش جنوبی بیشترین عمق را دارد، مکانیزم عمق آن 168000 km² می‌باشد.

4-1-1-1- ویژگی‌های فیزیکی و شیمیایی دریای خزر

1-4-1-1- دمای آب

دریای خزر در امتداد نصف النهار گسترده شده است، این امر سبب گردیده است که دریای خزر از شمال تا جنوب این دریا تغییرات قابل ملاحظه‌ای در دمای آب ملاحظه‌شود و دامنه این تغییرات در فصل زمستان بیشتر
شکل - 2 - دربای خوزر - نقشه عموم سنگی منع: 2002
من باشند. به گونه‌ای که در کتاب‌های زیست‌شناسی در زمستان دمای آب ۱۱٠ C - ۱۰ گزارش شده است، این اختلاف تقیبیاً ۱۰٠ می‌باشد. در نتیجه‌ای این اختلاف به ۲۰ C یک رسم به گونه‌ای که دمای آب در فصل ناپایان در خزر شمالي ۲۵ - ۲۳ است. در کرانه‌های شرقی دمای آب ۲۰ - ۲۷ است. در کرانه‌های غربی به ۲۱ - ۲۷ است. در نتیجه‌ی سواحل غربی خزر جنوبی نیز این تغییرات در طول سال مشاهده می‌شود. اما افزایش دمای هوا در نواحی غربی این میزان را تغییر دهد.

شکل - ۳ - میانگین نوزده سالانه دمای آب در لایه‌های سطحی دریاچه خزر - منبع: (Kaplin, 1995)

در خزر میانگین که تغییر نسبی طی فصول گرم و سرد کمتر می‌باشد نفوذ سالانه دمای در نزدیکی سواحل غربی و شرقی به ۱۰ C - ۱۶ برسد. شکل - ۴ - تغییر در دمای آب در دریاچه خزر از NOAA R از نشان می‌دهد.

شکل - ۴ - داده‌های دریافتی دمای سطحی دریاچه خزر

Sea Surface Temperature, restored from NOAA_12 satellite data

۲۳.۱۲.۲۰۰۲، ۱:۴۰ (GMT)

۳۰.۱۲.۲۰۰۲ - ۱۲:۰۰ (GMT)
شوروی آب دربای خزر در مقیاسه با آب افزایش ها 3 برای کمتر است (CEP 2002). تغییرات شوری آب دربای خزر از شمال نزدیک آن، در گستره 135/5 درجه 12 قرار دارد. جنگلی در شکل 5- مشاهده می‌شود اختلاف شوری در شمال و در حوالی دهانه رود ولگا در مقیاسه با نواحی جنوبی جنوبشرقی حدود 0% 12/5 هزار می‌باشد.

در دهانه رود های ولگا و نوژنال شوری 16 است و در مرز میان خزر شمالی با خزر میانی این میزان به 0% 11-10 می‌رسد. در خزر میانی و جنوبی نوسانات اندکی در شوری آب دیده می‌شود و شوری سطح در این نواحی 0% 12/5 هزار می‌باشد.

شکل 5- میانگین سالانه توزیع شوری لایه سطحی آب دربای خزر

(spoof d b چنین (a) اوت (c) اوریل (b) فوره (a) کتیر (Kaplin, 1995)

همچنان در شکل 5- دیده می‌شود میزان تغییرات شوری از گوشه شمال دربای در دهانه رود ولگا تا جنوبی قرار قرار گرفته در خزر جنوبی 0% 12/5 می‌باشد. شیب افراشته تغییرات شوری در دربای خزر از سمت شمال به جنوب و از غرب به شرق می‌باشد. این امر در نتیجه ورود رودهای آب شورینی است که در سواحل غربی وارد دربای خزر می‌شوند به علاوه با افراشته عميق افراشته بسیار اندکی در میزان شوری آب در تمام دربای مشاهده می‌شود.
شواهد منبجعات محلی می‌گوید که در کناره های دریا خزر درجه معمول از تنوع زیستی را پدید آورده است (CEP, 2002; Dumont, 1998). تعداد زیستی این دریا و نواحی مجاور آن سبب شده است که این منطقه یکی از بهترین‌های این دریا و جهان باشد. بیشتر گونه‌های موجود در این اقیانوس بومی هستند و تقریباً بیشتر گروه‌های جانوری معابدی‌گونه در آن دارند. این تنوع گونه‌ای به مساحت، تکامل و شکاف اثر گذار دارد (CEP, 2002; Dumont, 1998; Speciation) برای آن فراهم کرده است.

رتبه در این اقیانوس فراهم نموده اند. جدول 3- تعداد گونه‌ها در دریای خزر را نشان می‌دهد.

<table>
<thead>
<tr>
<th>منابع زندگی حیاتی دریایی</th>
<th>تعداد گونه‌ها</th>
<th>تعداد گونه‌ها و زیر گونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>فیتوپلانکتون</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>زیانوپلانکتون</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>فیتوبرئوس</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>زونوپراتور</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>ماهی</td>
<td>115</td>
<td>136</td>
</tr>
<tr>
<td>پستاندار</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3- تعداد گونه‌های موجود در دریای خزر

Kasymov, 1994; Dumont, 1998; CaspNRIKH, 2001
منبع: 2001

12
در دریای خزر ۳۱۵ گونه و زیر گونه زنلوبلاکتون مرحله ای که از دسترس گونه و نشان دهنده کمک از دسترس جنوی ۱۸۰ گونه زنلوبلاکتون زنگی می‌کنند. در تركیب زنلوبلاکتون خزر ۲۵ گونه بومی وجود دارد که بیشترین کمک‌ریز را در شوری های ۱۳-۱۲ دارد. (Kasymov, 1994)

روستی از (۱۳۵ گونه) کلادوسراها (۱۵۰ گونه) گونه بود که (۳۳ گونه) در شکل (۱۰) می‌شود. (Cumacea) گونه (۱۸ گونه) آمیگوسرا (۷۳ گونه) ترکیب زنلوبلاکتون هما در هر خزر را بیشتر از آن خزر نوستران. (EFA, 2002) می‌باشد. در مناطق عمیق خزر بیشتر و جنوبی زندگی می‌کنند و در فصل تابستان از لایه های گرم سطحی فرار کرده و از عمق ترمولوگی بالاتر شوند. (Dumont, 1994; Kasymov, 1998)

شکل ۱- گونه از کوهن بوده‌های در دریای خزر پایه می‌شوند.

(CEP, 2001)

گونه های (۱) و (۲) در دریای خزر بوده می‌شوند.

دریای خزر در مقایسه با اقیانوس ها و دریاهای آزاد دارای تنوع گونه ای کمتری از ماهیان می‌باشد. در این دریا تقریباً ۱۲۵-۱۷۶ گونه و زیر گونه ماهی متعلق به ۱۷ خانواده گزارش شده است. ۲ گونه از این ماهیان گونه وارداتی و سابر آنها بومی می‌باشند. کلیه ماهیان سطح یا کما در مناطق بار آبی را گرم خزر جنوبی زندگی می‌کنند. اما ماهیان عمیق را در لایه های سطحی خزر می‌پاتند. ماهیان دریایی عموماً در خزر بینی و جنوبی گذشته می‌گردند. (Kasymov, 1994)
في 50 سنة كان نشاط إنسان يعاني من تأثيرات سطح نهر دجلة:

- تغيير رؤية نهر دجلة ونهر نهر دجلة من تأثير أين زيت لحوم وإزالة مياه نهر دجلة ونهر دجلة
- تغيير تأثير نهر دجلة ونهر دجلة من تأثير مياه نهر دجلة ونهر دجلة
- تغيير تأثير نهر دجلة ونهر دجلة من تأثير مياه نهر دجلة ونهر دجلة
- تغيير تأثير نهر دجلة ونهر دجلة من تأثير مياه نهر دجلة ونهر دجلة
- تغيير تأثير نهر دجلة ونهر دجلة من تأثير مياه نهر دجلة ونهر دجلة

ماهين خاوياياسي استم كمعملة مده دو جنس ماهي (Huso) ونسر ماهي (Acipenser) في شرق دجلة.

1. ماهي (Huso huso)
2. ماهي (Acipenser stellatus)
3. ماهي (Acipenser gueldenstaedti)
4. ماهي (Acipenser niusventris)
5. ماهي (Acipenser persicus)
6. ماهي (Acipenser ruthenus)
7. ماهي (Acipenser stellatus)

الشكل 7 ماهين خاوياياسي دربى خور

در سياحي أنري أن ماهين نامريه دبلاش قره برون، ارتون برون ونسر ماهي (ش字第67) عمومي
دشته ونسر نيز دبلاش قره هاي خاصه في درجه أول قرار دانه ده. در سال 1995 ميلاد.
صندوق ماهیان خاویاری در جمهوری اسلامی ایران به ۱۵۸۵ تا رشدی است (2001) (CaspNRIKH ، Abbasion ، 1997). به شکلی است که میزان استحکام خاویاری نا سال ۲۰۰۰ به ۲۵٪ در سال بررسید. در اواخر دهه ۱۹۷۰ دریای خزر به بود ۸۵٪ خفاش ماهیان خاویاری جهان را در خود جای داده بود. اما ترکیبی که در سال‌های اختیار نشان می‌دهد که میزان صدای گونه های با ارزش تجاری کاهش یافته است. درصد صدای ماهیان خاویاری در سال‌های ۱۹۸۸ تا ۱۹۹۶ نسبت به سال‌های ۱۹۵۹ تا ۱۹۶۴ به ۲۴٪ کاهش یافته است. به کونه‌ای که میزان ماهیان خاویاری و آزاد ماهیان فقط ۱۲٪ کل صدای ماهیان با ارزش تجاری دریای خزر را شامل می‌شود (CaspNRIKH ، 2001) (The Sturgeon Specialist Group ، 1997) خفر از طرف گروه تخصصی ماهیان خاویاری (IUCN) حفاظت منابع طبیعی در لیست گونه‌های در معرض خطر "قرار گرفته است" (Shaw et al. , 1998).

پس از ماهیان خاویاری مهمترین ماهیان با ارزش تجاری کیلکا ماهیان به حساب می‌آیند. داده‌های صدای نشان می‌دهند که نا سال ۱۹۸۵ صدای کیلکا کاهش قابل ملاحظه‌ای داشته است. به سال ۱۹۹۶ میزان بردآوری ایران از خفاش ماهیان کیلکا ۱۱۰۰۰ تن بوده است (CaspNRIKH ، Shaw et al. , 1998) و پیش بینی می‌شود میزان بردآوری این خفاش در سال ۲۰۰۰ به ۲۰۰۰۰ تن برسد (Abbasian ، 1997). اما در کاهش قابل ملاحظه‌ای در این خفاش دیده می‌شود.

۳-۵-۱-۱-پیش‌بینی دریای خزر

تنها پیش‌بینی دریایی که در دریای خزر و تک گونه باشد

Phoca lulae caspica

تشکیل می‌شود. این گونه بومی دریای خزر می‌باشد و در کنار منطقه دریای خزر از دلتای رود ولگا تا سواحل ایران پراکنده‌تر از جنوب به شمال برمی‌گردد و زمستان را از دریای خزر شمالی سپری می‌کند و سپس در اوایل بانی به شمال برمی‌گردد و زمستان را دریای خزر شمالي سپری می‌کند. در این شرایط، گونه‌ای از ماهیان تبدیل به گونه نیفتند در زنجیره غذایی این دریا شناخته شد است که از ماهیان غذایی می‌کندی که بکار می‌انجام ماهیان غذای اصلی آن‌ها تشکیل می‌دهند. تصور می‌شود، آن‌ها گونه‌هایی هر سال در ماهیان خاویاری خزر تبدیل می‌شوند.
في أول فرن، جمعت فك دريابي خزر شهابية عن 10000000000000000 برآورد. في 2000، جمعت صيد وهي جزيرة دقيقة من جمعت فين من جنوبي دورم سانتا براني. في هذا خزر جنوب بحيرات ميورا سانتا براني، 15 فك دريابي خزر، ينطلق من جنوب بحيرات ميورا - سانتا براني، 15 فك دريابي خزر، 200 سانتا براني، ان اشاعت نمان دمنده صيد فيني جنوب متلاحم. فين جاندي مي رايان فين بحيرات ميورا سانتا براني، 15 فك دريابي خزر، 200 سانتا براني، ان اشاعت نمان دمنده صيد فيني جنوب متلاحم.

!! 3- فك دريابي خزر Phoca (Pusa) caspica

از اواخر دهه ۱۹۴۰ تا کنون بیش از ۳۰ گونه به دریای خزر معرفی شده‌اند (جدول ۴-۱). برای مثال در دهه ۷۰ محققین روسی یک گونه نرم تنه طول کمتر از ۱۲ بره نام Corbulamya به همراه صدف آبی Dreissena polymorpha و صدف گورخری Mytilus galloprovincialis به عنوان غذای ماهیان خاویاری به دریای خزر وارد شدند. همچنین کاتال و لنگا – دن که دریای خزر را به دریای آزوف اتصال می‌دهد، سبب معرفی گونه‌ها از طریق دلتا رود ولگا می‌شود.

<table>
<thead>
<tr>
<th>نوع گونه معرفی شده</th>
<th>زمان معرفی گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizosolenia calcar-avis, Mytilaster linearus</td>
<td>آغاز فرق بستم</td>
</tr>
<tr>
<td>Leander squilla (نوع دیگر)، L. adspersus (نوع دیگر)</td>
<td>اوایل فرق بستم</td>
</tr>
<tr>
<td>Mugil auratus (نوع دیگر گلابی)، M. saliens</td>
<td>پس از احداث</td>
</tr>
<tr>
<td>Pleuronectes flesus luscus (نوع دیگر این زیرگونه)</td>
<td>کاتال ولگا – دن</td>
</tr>
<tr>
<td>Nereis diversicolor, Abra ovata (نوع دیگر دریایی)، Scardium hermaphroditum</td>
<td></td>
</tr>
<tr>
<td>Scomber scomber (نوع دیگر جهانی)</td>
<td></td>
</tr>
<tr>
<td>Pleopsis polyphemoides</td>
<td></td>
</tr>
<tr>
<td>Balanus impavus, B. eburneus (شلبار)، Ceramium diaphanum, C. tenuissimum, Ectocarpus confervoides, Polysiphonia variigata, Blackfordia virginica (نوع دیگر گلابی)، Rhithropanopeus harrisi</td>
<td></td>
</tr>
<tr>
<td>Engraulis encrasicholus (نوع دیگر این زیرگونه)، Anguilina anguilla</td>
<td></td>
</tr>
<tr>
<td>Gambusia affinis (نوع دیگر این زیرگونه)، Oncorhynhus keta</td>
<td></td>
</tr>
<tr>
<td>Penilia avirostris, Calanipeda aquaelulcis (نوع دیگر این زیرگونه)، Acartia clausi</td>
<td></td>
</tr>
<tr>
<td>Mnemiopsis leidyi, Aurelia aurita (نوع دیگر این زیرگونه)، Oncorhynhus keta</td>
<td></td>
</tr>
<tr>
<td>Ctenopharyngodon idella (نوع دیگر این زیرگونه)، Hypotelmichthys molitrix</td>
<td></td>
</tr>
<tr>
<td>Salmo salar (نوع دیگر این زیرگونه)، Aristichthys nobilis</td>
<td></td>
</tr>
<tr>
<td>Oncorhynhus gorbuscha (نوع دیگر این زیرگونه)، O. kisutch</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴-۱: گونه‌های معرفی شده به دریای خزر. منبع: Mamaev, ۲۰۰۲.
ترکیب فیبریکو شیمیایی ویژه دریای خزر و موقعیت جغرافیایی آن سبب گردیده است که گونه های بیکانه به سختی قادر به سازگاری اکولوژیکی این دریا هستند و جنگله شکارچی برای کونه وارداتی وجود نداشته باشد و شرایط نیز برای رشد و تولید مثل آن مساعد باشد تراکم کونه وارداتی به شدت نزدیک می یابد و می نوازید از این می تواند کمکی در حفظ سطح محموله روسی در خزر شمالی ارائه گردد در همان زمان گروه محققین دانشگاه تربیت مدرس ایران نیز وجود این کونه بیکانه در سواحل ایرانی دریای خزر را گزارش نمودند از آن تاریخ نا کشون جمعیت این گونه به شدت افزایش یافت و اندکی صنعت بر جنگلاتی که دارای زیست خوان مشترک می باشند تحمیل کرده است. (EEA,2002, CEP,2002, Ivanov et al.,2000; Shaw et al.,1998, Stone, 2002) (اسماعیلی و همکاران, 1378)
2 - 1. کیلکا ماهی‌ها

رده بندی کیلکا ماهی‌ها به شرح زیر است (اقتباس از کیویان، 1381):

سلسله: جانوران

(Chordata) شاخه: ماهی‌داران (Fishes)

فوق رده: ماهی‌نما (Osteichthyes)

رده: ماهی‌نما استخوانی (Actinopterygii)

زیر رده: شعاعی بالان (Teleostei)

فوق راسته: ماهی‌نما استخوانی حقيقی (Clupeiformes)

راسته: ساردن‌نما ماهی‌سانان (Clupeidae Cuvier, 1816)

خانواده: ساردن‌نما ماهی‌سانان (Clupeidae Cuvier, 1816)

(Chupeonella Kessler, 1877)

این جنس با 4 گونه در دریای سیاه واقع در وست از این جنس که در آب‌های دریای خزر و آب‌های ایرانی زیست می‌کند عبارتند از:

Clupeonella engraliformis 1. گونه کیلکای انجز

Clupeonella grimmi 2. گونه کیلکای چشم درشت

Clupeonella cultriventris caspia 3. زیر گونه کیلکای معمولی

شکل - 14 - انواع مختلف کیلکها در دریای خزر
Clupeonella cultriventris
Clupeonella culturiventer (Nordmann, 1840)
2 – 1 - 21 - ريخش شناسى و كليه شناسایى

بر اساس توصیف آسیسنو، زیر کونه دریای خزر دارای بدن دوکی کشک و سینه‌ای گودی است که طول
کل بدن (TL) (ان) 12/8 cm و میانگین طول کل بدن 7/8 cm می‌باشد. حداقل ارتفاع بدن
12/8 cm و طول متوسط 19/7 cm است. این زیرکونه سر کوچکی دارد که به طور متوسط
21/4 cm و میانگین قطر چشم نسبت به طول سر 21/4 cm می‌باشد. آرواره پایینی نسبت کشک و فلش‌های
شکمی به خوری یک واقفه اند. باله‌های سینه ای و وشکمی بلند هستند و طول آنها به ترتیب
21/2 cm و 17/7 cm می‌باشد. تعداد میله‌های هایان آنتی‌پز (Aseinova, 1992).

(Black sea sprat (Whitehead) (1985) متوسط طول کل بدن کلیکی دریای سیاه
و Whitehead) 1985 (TL) 15/63 cm و طول استاندارد بدن باد
و طول فورک را 87/3 cm. ارتفاع بدن را 19/67 TL و طول سر را
18/7 TL و قطر چشم نسبت به طول سر را 19/67 TL.

(C.uteriventris caspica) در توصیف کلیکی معمولی
Coad ارتفاع 21/8 cm طول استاندارد معمولی می‌کند که سری کوچکی و شکمی دارد که به توان آن نسبت به طول
سر 19/5 cm و يا بینشیر می‌باشد. طول استاندارد بدن (SL) این کونه 14/5 سانتی‌متر و وزن آن 4919 g است.
bاله‌های شکمی و سینه‌ای نیک تر و معمول‌تر دارای بیش از 51 عدد میله‌ای آنتی‌پز می‌باشد. تعداد
مهره‌ها 44 عدد (و به تدریج تا 45) عدد است.

زیر کونه دریای خزر به واسطه داشتن باله‌های سینه‌ای و شکمی کوچکتر، بدن باریک‌تر و سری
کوچکتر از زیر کونه دریای سیاه متمایز است. طول باله سینه‌ای و شکمی به ترتیب
19/5 cm و 19/5 cm است. رنگ قفسه رنگی بند بدن سیاه یا سبز روشن و رنگ شکم و یهلو ها سفید
نفره ای است. کله‌های با کپی شده است. باله‌های سینه‌ای و دم شفت های است. مرکز باله ی پشت
شیره است و خطوط رنگی روی آن دیده می‌شود. فاصله باله دم تیره می‌باشد. رنگ عنبیه ی چشم ایمن ماهی سیاه
است. (Coad, 1991. طول فورک (FL) 9/3 cm و میانگین وزن 17/8 g. میانگین طول سر
11/2 FL و میانگین نسبت 19/76 cm. تعداد مهره‌ها 43/6 عدد و میانگین میله‌های آنتی‌پز 57/9 عدد ذکر شده است. (فاضلی‌های 13/9).

۴-۱-۲-۱-پراکنش

gونه (c. cultriventris) در مناطق مختلفی از نژادین جنوبی پلی گونه پلی می‌شود. در بخش خیلی شمال غربی دریاچه سیاه، دریاچه ازد و دریای خزر است که می‌تواند در رویش‌های جاری در این حوضه‌ها نیز آن را مشاهده کند.

زیر گونه (C. Culteriverinis caspica) در سال ۱۹۰۴ در دریای خزر N A Bordin در ناحیه (CEP) اولین بار توصیف شد. این گونه در سرتاسر دریای خزر و در انتظار پراکنشان در آب‌های ترمال به سمت دریای خزر گشته است (Prikod kov, 1979). در ناحیه گونه پلی در دریای خزر فراوانی‌تر بوده و به همراه گونه دیگر، این گونه به‌عنوان یک گونه پلی در کشور ترکیه در آب‌های مناطق شمالی دیده می‌شود و در سواحل بیشتر از ۱۰۰ متر به‌عنوان گونه پلی در ناحیه دیده می‌شود.
این زیرگونه در رودخانه‌های ولگا، اورال، انبیک (CEP, 2001) و رودخانه‌های بیارز تالاب اندریخا و رودخانه سفید (Coad, 2002) روی نیاز مشاهده شده است.

زیستگاه این زیرگونه در دو روز در نواحی ساحلی و آبادانی می‌باشد. میزان شوری زیستگاه جمعیت که در خزر بجنورد زندگی می‌کند از زیستگاه‌های جنوبی واقع در خزر بجنورد و شمالي بین‌نهر بوده و این جمعیت ها در محدوده دماهای بین 27/02°C تا 27/02°C زندگی می‌کنند.

1- 20- 1- رفتار مهاجری

این ماهی یک گونه آنادرم است که به هنگام تخم‌بردی از دریا به سمت رودخانه مهاجرت می‌کند. در خزر شمالی این ماهی مهاجرت خود را با تخم‌بردی زیر اساس ماه شروع می‌کند که این عمل تا اردیبهشت ماه ادامه دارد (CEP, 2001).

دو نوع دیگر مهاجرت در این ماهیان، مهاجرت برای تغذیه و زمستان گذرنامه می‌باشد. مسیر های مهاجرتی این ها دورنمایی باشند و جایگزینی میان عرضه تغذیه ای تابستانه زمستانه و عرضه تخم‌بردی تابستانه خود دست به مهاجرت می‌زند. بسیاری از ماهیان در خزر بجنورد به زمستان گذرنامه می‌پردازند. و برخی نیز در تابستان تغذیه و تخم‌بردی در فروردین ماه به سمت خزر شمال حرکت می‌کنند.

در سواحل شرقی دریای خزر گل‌های پرگ گیاهان معمولی در فواصل ۱-۲ Km در ۲-۵ دور از ساحل در اعماق ۲۰-۲۵ m بنا به شرایط و اگر دمای آب زیاد شود به اعماق بیشتر غوص می‌کند. در باین‌گاه که از یک ماه مجدداً کاهش می‌یابد این ماهیان تا اعماق ۸ m به سمت بلالا می‌آیند. پس از آن با شروع فصل زمستان در اعماق ۴-۵ m، جایی که دمای آب در گستره ۰۰-۱۰°C و گرم‌تر از سطح فصل‌های نامی است، به سمت شنود می‌پردازند.

علاوه بر مهاجرت فصلی این گونه مهاجرت شبانه روزی نیز دارد گل‌های پرگ ماهی در روز نیز به

های بالایی دیده می‌شود. اما در شب ناییده می‌گردد (Coad, 2002).

۲۴
1-1-1-1-1-1-1-1-1-1-

اللغة العربية غير قابلة للقراءة بشكل طبيعي.
طول كل (TL) لاروها m = 11/8 أروه m = 11/3 أروه m

واحدة منه زنادية جزء شده است. طوي، اين دوره سبيبة بدن جندران ذو ارتفاع يافته 3/04 m m = 55-50 m m = 1/01 (fingerlings)

افرازيم م ا ياد.
زيبر غونة كيلكاس درياي خرو نسبته به زنغر ساكن در درياي سياه سبريبرت رشد مي كند. متوسط طول كيلكاس ماهياني كه از خزير شمالي صيد شده اند 7/1 cm. متوسط وزن ار اسال است. من وسط سن 3 حيزا وسط. در خزير جنوبی اين مفاهيم به ترتيب 7/9 cm = 2/4 g. 7/9 cm = 2/4 g.

در سال اول عمر، رشد جمیع ماهیان در خزیر جنوبی سبیرت از جمیعیت واقع در خزیر شمالي است. ماکریم طول کیلکاس در دریای خزیر 6/5 cm و 4/11 موزم، وزن 19 g و بیشترین سن گریزی شده از کیلکاس 6 سال می باشد (CEP.2001) در منبع دیگری ماکرمی 3سن گریزی شده از کیلکاس معمولی 5ساله.

می باشد (Whithead.1985).

۱-۸-۱-۲-۱-ساختار سنی و جنسی جمیعت

تفاوت ظاهری در جنس نر و ماده وجود ندارد و طی دوره نمو نخیم که شکم ماهی ماده ممتور است.

در جمیعیت ساکن در خزیر شمالي در کلیه گروه های سنی نرها بر ماده ها غالب هستند (79/5٪). در جمیعیت سنی در ذیل خزیر جنوبی 1:1 است. در فصل بهار نرها (50/0٪) و در فصل پاییز ماده ها (50/0٪).

گروه غلبه می باشد (5/5٪).

ساختار سنی جمیعت بین از 3 سال را در بر می کرد ماهیان 0-1-2 و 3-4 ساله در جمیعیت نسبت غلبه می باشد و به طور متوسط 87/5٪ جمیعیت را تشکیل می دهد.

۱-۹-۲-۱-تغذیه

کیلکاس معمولی نبره مندند ساکر ماهیان از درگیربورون (هترباتروف) است. این ماهی فاقد دندان بوده و خارشات آشیانی در آنها سبب طول گشته در جمع آوری پلانکتون ها به صورت یک فیلتر مورد
استفاده قرار می‌گیرد (1992، ونچی.غ.1376). از طریق شکار و در طول روز غذا خوردن را به دست آورده و برخورداری که می‌باشد. از نگاهی به یکی از این گونه به‌جا می‌مانند که بطور معمولی نسبت به سایر گونه‌های کینگا کاسپیان مسیره‌های مسیره‌های باشد (Badalov، 1972، Prikodkov، 1979). بیش از ۴۸% خوراک را در می‌گیرد.

در کتاب‌شناسی، از دو آرا به استفاده در این گونه را گونه از (Taxa) است که به‌روز و معمولی است. لازم بوده که پلانکتونی با اندازه‌گیری و نرم تان تفکری است. ممکن است غذا اصلی این گونه بوده است و پس از آن کلاسیک‌ها قرار دارد. چنان‌که هر اخیر در خروج ماهیان سیستم توده کوپه به‌روزه‌های تا ۳۵% زیر است. توده پلانکتونی کاهش یافته است (Cep، 2001).

ماهیان مسی در سخت بوم و زیر نرک تا را شکار می‌کنند و به هنگام رشد، نسبت به سایر پنجم، غذای کمتری مصرف می‌کنند. تغذیه روزانه در ماهیان کلاسیک‌های حزین شمایی ۵/۰ وردن و در کلاسیک‌های حزین جنوبی ۳/۳ ۲/۲ وردن می‌باشد. متوسط غذای مصرفی روزانه در ذخایر ماهیان حزین (۱۶/۲) ۱/۰ در ذخایر کلاسیک‌های معمولی حزین جنوبی (۲/۲) ۱/۰ است. بیشترین بسترسی تغذیه در فصول نیست. پاپیز است و در زمستان و نیز در هنگام تولید مثل این مسیر کاهش می‌یابد. (Aseino, 1992، Coad، 2002، CEP، 2001، Whitehead، 1985).

۱۰ - ۱ - ۲ - ۱ - شکارچیان و انگل‌ها

مهم‌ترین ماهیان مسی که توسط ماهیان حزین کاری می‌کنند به‌روزه‌های ۱۵/۰ وردن (Clupeonella). کنجه‌های این ماهیان حزین که باید ماهیان حزین کاری می‌کنند به‌روزه‌های (Badalov، 1972، Krylov، 1984) و نیز (Silurus leucichthys) ۱/۰ و ماهیان سفید (Salmo trutta capiscus) به مصرف تغذیه ای می‌رسند. (Kosarev & Yablokskaya، 1994)

IUCN ۱۱ - ۱ - ۲ - ۱ - وضعیت رده بندی به‌روزه‌های کاسپیان از نظر IUCN

از نظر رده‌های به‌روزه‌های کاسپیان (Culteriventris capiscica) زیر گونه گونه‌ای در خروج جنوبی گونه‌ای است که در رده "ویژگی پایین تر" (I.R - least concern) در سالهای (Kiabi، et al، 2019).
أخیر افزایش غلظت آلیانسان هایی مانند فنل، فلزات سنگین، نفت و مشتقات آن و هیدروکربن های اروماتیک در سطح آب در نواحی خزر میانی و جنوبی گزارش شده است. آب‌های آلیانشدا ممکن است اثرات حاد سرمی بر کلکا ماهیان داشته باشند. از سال 1999 تا کنون نیز هم‌زمان با حضور شانه دار بیگانه در دریای خزر، که رقیبی برای ماهیان پلانکتون خوار است، کاهش شدید در ذخایر این ماهی گزارش شده است (CEP، 2001).
Clupeonella engrauliformis

Whitehead, 1985
Clupeonella engrauliformis (Borodin, 1904)

الفارسی: کیلکای آنجوی

انگلیسی: anchovy sprat

ترکی: anchousoidnaya tyulka

روسی: anchoustektee kilka

این گونه دارای بدن استوایی ای شکل و کشیده ای است که طول کل بدن (TL) آن ۱۴/۵ cm و میانگین طول کل بدن ۹/۵ cm می‌باشد. حداکثر ارتفاع بدن ۱۷/۸ TL است. استوایی گونه سری کونه و کوچک دارد که به طور متوسط ۴/۴TL است. قطر چشم نسبت به طول سر ۱۷/۹/۲/۵ TL می‌باشد. باله به سه حلقه ای خارجی و داخلی قرار دارد و سنگینترین بخش بدن بخش پایین است. نسبت بدن به طول متوسط ۱۶/۷TL و (متوسط ۱۴/۹TL) می‌باشد. عدد یک به تعداد ماهی‌های ۴۷ (متوسط ۴/۷) عدد می‌باشد. رنگ بالایی سر و قسمت بلند بدن به میزان

c: (۱۷/۶/۲ TL متوسط طول کل بدن کیلکای آنجوی را ۱۵/۵ cm طول استاندارد بدن را Whitehead طول فورک را ۱۷/۷ TL، ارتفاع بدن RL ۲۰/۸ TL و قطر چشم نسبت به طول سر را ۲۳/۳ TL، کارواش داده است (۱۹۸۵).

در توصیف کیلکای آنجوی آن را گونه ای با بدن استوایی ای شکل معرفي می کند که طول استاندارد بدن آن ۱۵/۵ cm و ارتفاع بدن ۱۶/۸ cm است. مکانیک و کشیده و پهنای آن نسبت به طول سر ۱۷/۵ cm می باشد. فلسفه ی کشکی ۳۱-۲۳ عدد است. معمولاً
داراي بيش از 77-65 عدد خار ايشني مي باشند. تعداد مهره ها 47-44 عدد (و به نذرات تا 48) عدد است.

رنگ سر و قسمت پنجه بدن آبي تيره با سايه روهن سرير یا زيتوني است پس از مرگ ماهوي ايش رنگها روهن تر شده و یا به ساياه متعادل مي شوند. کليه اينها به نشانه ناله هايي تختي و دمي شفاف هستند. (Hyalone) (Coad, 2002).

در کواراکس ديگری ميانگين طول كل 85 نمونه کيلکلاي درايي خزر در مياحال بابلسر 7,10 cm طول فورک (FL), ميانگين وزن 85 g و ميانگين تعداد مهره ها 45/2 عدد ذكر شده است.

ارقام 1279.

نتایج زمستان کيلکلاي انچوي در منطقه شيلانی بندر انزلی طی فصول مختلف سال نشان مي دهد که دامنه طولی اين گونه در فصل بهار 87-121 cm و وزن متوسط 84 g به دو نبنا مقايد در فصول 12/4 cm نابسته به ترتيب 12/9 - 7/1 و 7/1- 8/6 cm و در زمستان 12/4 g و 8/5 و 7/9 است. این نتایج نشان مي دهد که بين طول کيلکلاي انچوي در فصول گرم و سرد مي نباشد. معني داري وجود نتارد و ميانگين وزن در فصل بهار نسبت به فصل زمستان پيشتر است. در سایر فصول اختلاف معنی داري بين ميانگين ها موجود نبود. در سال 1375 كثره طول 87 cm و دامنه وزن 87-28 g و ميانگين 87 g و 87-28 (ميانگين 87 g) کواراکش شده است (صياد بوراني 87).

12-19-1 پژستگاه

از ماهيان سطح زمین است. اين ماهي اساساً كونه آب هاي لب شور محصور مي سر و بک گونه استثنو هالون به حساب مي آيد که قادر به تحمل نومنات محدود شوري است. بيشترین تراكم جمعيت آن با سطح شوري از 10% کواراکش نسده است. بيشترین شدت نحم ريزى در شوري 5-10 مرسي مي دهد و ماهيان جوان در آب هاي با سكرى 7% و رنگ قهوه كنده است (CEP,2001;Coad,2002; Whitehead, 1985). اين ماهي گروها دوست گويده و قادر است در گروه و دماغي از 28-20، رنگ كنده كنده بيشترين جمعيت آن در آب هاي با دماغى بيش از 8° C براکنش مي گي. (Whitehead 1995.

1995 و برمنجلف و سايرين 1995.)
در خزر میانی، به دنبال کاهش دما و بهبودی طبیعی آب و هوا، ماهیان انگوری برای زمستان کنترلی به بخش‌های جنوبی دریاچه خزر که دمای آب آن در حدود ۱۳/۸۵ درجه سانتی‌گراد بوده است، مهاجرت می‌کنند.

نوع دیگر مهاجرت ماهیان در فصل بهار روی می‌دهد. در این زمان، ماهیان باعث تغذیه ای خود را در خزر شمالی و میانی بخش می‌دهند (Prikod'kov, 1979).

ماهی‌های انگوری از اولین خرداد تا اواست تابستان، به نواحی در خزر میانی و جنوبی که دمای آب آن ۲۰ درجه ۰ درجه سانتی‌گراد است مهاجرت می‌کنند (CEP, 2001).

۱-۲-۱-۱-۱-۰ تولید مثل

تولید مثل در این ماهی به صورت جنسی است. ناخود رزی در نواحی بزرگ دریاچه خزر می‌دهد (Whitehead, 1985).

عمده ترین نواحی ناخود رزی برای ماهیان انگوری به بخش‌های جنوبی خزر می‌پردازد. در این نواحی ۴۲٪ از ماهیان انگوری ناخود رزی می‌کنند. ناخود رزی غربی خزر جنوبی ۲۴٪، بخش جنوب شرقی خزر جنوبی ۱۷٪، بخش شمال غربی خزر میانی ۱۰٪ و بخش جنوب غربی خزر میانی با ۸٪ جمعیت به ترتیب نواحی را نشان می‌دهند که کمترین میزان ناخود رزی در آن‌ها صورت می‌پذیرد (CEP, 2001).

در جنس ترک، گونه‌ها در فصل گرم حضور دارند و ماهی مو جوان را جهت ناخود رزی آماده می‌کند. نسبت وزن گونه‌ها به وریک ماهی مو به اولین سال عمر افزایش (۲۱/۷/۸۵٪) می‌یابد و در سال سوم جهار به بیشترین مردان رشد خود (۷۷/۸۵٪) می‌رسد و پس از آن تا آخر عمر ماهی کاهش (۷/۸۵٪) خورده می‌گردد (CEP, 2001).

ناخود رزی در محدوده دمایی ۲۵-۲۵ درجه سانتی‌گراد در خزر میانی و بیشترین میزان ناخود رزی در دماهای ۲۰ درجه سانتی‌گراد در نواحی ابتدایی ارتفاع شده و تا اواخر به راه ادامه می‌یابد. پیش‌تر ارتباط بین نوع فوق‌العاده‌ای به بخش‌های خزر و ناخود رزی می‌کنند (Prikod'kov, 1979, Coda, 2002). یکی از این رو، ناخود رزی از سوی ارده‌سوزان‌ها جامعه‌ای قرار می‌دهد و با این حال ناخود رزی می‌کند و پیک ناخود رزی آن (۷۸٪) در اوایل سال، و اولین آب‌زایی اول ناخود رزی در جمعیت انگوری در خزر شمالی جهار به بیشترین مردان رشد خود (۷۷/۸۵٪) می‌رسد و پس از آن تا آخر عمر ماهی کاهش (۷/۸۵٪) خورده می‌گردد (CEP, 2001, Coda, 2002). در نواحی خزر شمالی، جمعیت انگوری در ماه‌های تابستان رشد و مردانی که دمای آب آب ۲۵-۲۵ درجه سانتی‌گراد و شوری ۵ درجه سانتی‌گراد است، ناخود رزی می‌کند (Whitehead, 1985).
مناسب بینن شرایط برای بقاء لارو همزمان با دوره تخم بزرگ آبی‌پاپی‌یزی اواسطه مهر - دوازدهم آبان ماه.

(CEP, 2001)

۱-۲-۲-۱-۱۷

ماهیان کیلکیکا آنجویی به واسطه داشتن دوره کودنه جنینی به طول ۲۴ ساعت و دوره لاروی طولانی که ۷-۶ ماه به طول می‌انجامد، مشخص می‌شود. تخم‌ها پلازیک و کوکستند. قطر نختم لقاح بانه به ۱/۲ می‌رسد، ماهی گونه اصلی ماهی ماهه ۱۰-۸ ماهه به طول ۸ cm تخم‌های ماهی‌کیلکیکا دارد. افزایش می‌باشد. طول و در سالگی افزایش طول به حداکثر رشد (۳ m) می‌رسد. وزن ماهی نیز طی سال سالگی اول زندگی به سرعت (g) به ۴/۷ -۱۷/۶ افزایش می‌یابد. بر اساس درک ماهیان کیلکیکا در سال سالگی به بعد نسبت ویژه تعداد ماهی که آنها در دریاکال‌ها می‌شوند متوسط طول ماهیان آنجویی که تخم‌های ماهی‌کیلکیکا به حداکثر ۳ سال می‌رسد. وزن ماکزیمم طول ماهیان آنجویی در حوزه (4/5 cm) و وزن ماکزیمم وزن ماهیان در سالگی اول Zndgی به سرعت (g) به ۴/۷ -۱۷/۶ افزایش می‌یابد. بر اساس درک ماهیان کیلکیکا در سال سالگی به بعد

(CEP, 1981)؛ (CEP, 2001)

۱-۲-۲-۲-۱۸

تفاوت ظاهری در جنس نر و ماده وجود ندارد. در نواحی تخم بزرگ ماهی‌ها با روکش از نرها هستند و نسبت جنسی (ماده: نر) در دختران آنجویی ثابت و تقیی‌ تا ۱:۱ است. در فصل بهار نرها (۵/۰۳٪) و در فصل پاییز ماهی‌ها گروه غالب می‌باشتند (۳/۵۳٪) در گروه‌های مختلف تفاوت‌هایی در این نسبت مشاهده می‌گردد. ماهی‌های سال ۶ + ماده‌ها با ضریب ۱/۲ بر نرها غالب هستند (CEP, 2001).

جمعیت کیلکیکا آنجویی شامل هشت گروه سال است. جمعیت اول ۱۰ + ۲ + ساله در جمعیت نسبت غالب می‌باشد و به طور متوسط ۹۱/۲٪ جمعیت را تشکیل می‌دهند. سه بانه ماهیان ۴ و ۵ + ساله ۸۵/۷٪ جمعیت و ۷+ ساله ها ۳۰٪ از جمعیت می‌باشد (برخی‌ها، ۱۹۸۱)؛ (CEP, 2001)

۳۴
کیکلکای انگوری نیز همانند سایر ماهیان از دکتریپوران (هتروتروفو) است. این ماهی فاقد دندان‌بوده و خار های آبنمی در آنها بسیار طولی گشته است. برای جمع‌آوری پلاکت‌ها به صورت بک فیلتر مورد استفاده قرار می‌گیرد (ویکی‌پدیا، غربی، ۱۳۷۷).

این ماهی از طریق شکار غذا خود را به دست آورده و انتخاب گرا می‌باشد. ماهی انگوری همه چهار خوروردی و در رژم غذایی آن ها کوچه‌پوش‌ها غذا را اصلی می‌دانند. کلادوسرا ها نیز در بالمانوی بالانوس و نرم‌نوزندگان نیز در ترکیب غذایی ماهیان انگوری دیده می‌شود. کوچه‌پوش‌ها ۹۰٪ نر و ۷۰٪ بچگانه غذا بر روی سال های مختلف عمر ماهی تغییر می‌دهند. در فصل ورودی و زمستان، که زیست‌نظام بالانوسی از طریق سالت یا مخلوط شده با مقدار متوسط ۲۷٪ به‌شوران سه‌ماهی در ترکیب غذای ماهی انگوری دارای است. کیکلکای انگوری در مقایسه با دو کوچه‌پوش دیگر کیکلکای معمولی و کیکلکای چین در نظر گرفته شده می‌باشد. بیشترین مهارت عمودی و جابجا بالینی این گونه در نتیجه وجود این نوع جابجاگری در کوچه پوش‌ها می‌باشد. (Badalov, CEP 2001)

۱۰-۱۲-۱۷ روابط بین گونه‌ای

ماهیان انگوری رقیب‌برای سایر گونه‌های کبکا و شگ ماهیان بالانوی خواسته و بی‌بوده شاه ماهی دریایی خزر و تا حدی شاه ماهی کرکد رود ولگا که بکر از مهم‌ترین مصدر کننده بالانوی دریایی خزر هستند. می‌باشد. همچنین این ماهیان غذا اصلی برای شکارچیان مانند شگ ماهیان، سوی ماهیان، آرد ماهیان، فیل ماهیان و ماهیان خاویاری و همچنین فرک دریایی خزر است.

IUCN ۱۲-۱۷-۱۱ وضعیت رده‌بندی تهدید گونه‌ای

گونه IUCN ۱۲-۱۷-۱۷ در وضعیت خطر جنوبی در رده گونه‌های سا از نظر رده‌بندی تهدید IUCN (C. engrauliformis) "ریسک پایین تر" (LR) قرار دارد (کیبانی و ویگر، ۱۹۹۹). در سال‌های اخیر افزایش شد. "LR" قرار دارد (کیبانی و ویگر، ۱۹۹۹). در سال‌های اخیر افزایش شد. "LR" (MAC) برای آبی‌ایان است. علاوه بر این افزایش غلط از آن‌هایی باعث شده که فاصله‌هایی میان دو نیافته و مشخصات آن و هیدرو کریستین ماهیان در این ناحیه در سطح آب در نواحی خور مانند و جنوبی می‌تواند اثرات حاد سبی بر کیکلکای ماهیان داشته باشد.
که *Mnemiopsis leidyi* باشند. از سال 1999 تا کنون، هم‌زمان با حضور شانه‌دار بیگانه در دریای خزر، رقیبی برای ماهیان بلافکتیون خوارو بالاخس ماهی‌انجی می‌باشد. کاهش شدیدی در ذخایر این ماهی، گزارش شده است (2001، CEP).
Clupeonella grimmi
Clupeonella grimmi (Kessler, 1877)

1-2-3-4-5-6-7-8-9-10-11 نام های متداول

انگلیسی: bigeye kilka
فارسی: کیلکایی معمولی

ترکی: irizok kilka
روسی: bol'sheglazaya kil'ka

از بخش مرکزی دریاچه خزر توصیف شده و لکوتیپی از آن در Clupeonella grimmi Kessler 1877 مورز جانورشناسی سنت پترزبورگ تحت شماره 10934 در سال 1952 توسط Svetovidov وارد گروه مترادف در سال 1921. هاگن می‌تواند در کبوط کبود قسمت‌های بالای سر و بین چشم‌ها به‌صورت ترکیب‌های سازگاری بافته‌اند که از تمام بیانیات این گونه‌ها برای زندگی در آب‌های عمیق کر در حال‌دار که جمع‌بندی شده است. همچنین بین چشم‌ها و نسبت به سایر گونه‌های کیلکای شفاف تر است. (Coad, 2002)

متوسط طول کل (TL) بدن کیلکایی 33 cm چشم درشت را 18/75 cm طول استاندارد بدن را 15/72 cm طول فورک و 18/75 cm طول سر را 2/177 TL را دارد. (Whitehead)

چشمی نسبت به طول سر را 38/13 % گزارش داده است. (Whitehead, 1985)

در گزارش دیگری میانگین طول کل 71 نمونه کیلکایی چشم درشت در دریاچه خزر در موقعیت از 11/32 cm تا 11/32 cm میانگین وزن 0/71 را دارد. (فلیش)
یستگاه Z. grimi
نسبت به ماهی‌آنچوی در مناطق دورتری از ساحل در اعماق بیش از 70 m و تا عمق 130 m بافت می‌شود. گله‌های بزرگ ماهی کبک‌کاهی چشم درشت‌نامه عمیق بیش از 42 m هستند. یافته‌های شناسایی در سواحل سیاه و ساحل‌های شرقی کم وارد شوند و بنابراین در مناطق دور از ساحل زندگی می‌کند و اساساً یک گونه دریایی است (Whitehead, 1985).

پراکنش
گونه Z. grimi در مناطق معنادار N۴۲ در جنوب شرقی N ۳۶ در N (Reshetnikov et al., 1997) در دیگر خلیج لست که بیشتر در نواحی میانی و جنوبی این دریا زیست می‌کند.

ویات مهاجرتی
مهاجرت روزانه در گونه ماهیان دیده می‌شود. کبک‌کاهی چشم درشت شده به شدت از نور خورشید دوری می‌کند. به‌دلیل کاهش دمایی ماهی‌های آدر و دی، ماهیان کبک‌کاهی چشم درشت نور زمستان گذشته به پایین جنوبی دریای خزر مهاجرت می‌کنند و در بهار مجدداً به خزر می‌آیند. (Prikhod'kov, 1979). کلمه ماهیان کبک‌کاهی چشم درشت در زمستان و اولین بهار در لایه‌های عمیق زندگی می‌کند و در بازوی شرقی 20 - 100 m تجمع می‌کند. (Whitehead, 1985)

تولید مثل
تولید مثل در این ماهی به صورت چنین است. تخم ریزی در نواحی بار دریا در محدوده دمایی 13 درجه ده درجه 6 درجه بایو در شرایط شرایط دریا و 12/6 درجه می‌دهد (Whitehead, 1985). در شرایط دریایی باریک، تخم ریزی نا‌واضح در خط شروع شدن و تا اواخر ماه آگهی می‌باشد. اما پیش‌ترین میزان تخم ریزی در واکنش به افزایش میزان گرادیت در ماه‌های جاری و در روزهای پایانی ماه می‌تواند به هزار تخم در یک ماه برسد (Prikhod'kov, 1979; Coda, 2002). در هر دوره باروری تعداد تخم‌های 2800 در می‌باشد.
یا نماد جنسی معمولاً در سن۲ سالگی به بعد است. همیاران رشد در این ماهیان در مقایسه با کیلکها
آنجوی بسیار کند تر می‌باشد.
نفوذ طاهری در جنس نر و ماده وجود ندارد. اما در سن بلوغ ماده‌ها برگشته‌ای نرم‌هاستند. در
زمان تخم ریزی از نظر جنسی نرها بر ماده‌ها غالب هستند. زیرا ماده‌ها پس از رها سازی تخم به
عمق m۲۵-۳۰ می‌روند و می‌گیرند در همانه‌ای m۲۰-۲۰ باقی می‌مانند.

۲-۲-۸ تغذیه
این ماهی از طریق شکار غذا در خود با دست‌آورده و انتخاب کرده‌ای می‌باشد. ماهی کیلکها چشم
درشت همچنین خوری بوده و در زمین‌یابی آن‌ها ماسیف‌ها غذای اصلی می‌باشد. این ماهیان از لازو و
ماهیان کوهک نیز تغذیه می‌کنند. تنوع غذایی در این ماهیان نسبت به دو کونه دیگر ماهی کیلکا کمتر
است. زیرا تنوع گونه‌ای در لایه‌های عمیق آب که این ماهیان در طول روز در آنها زیست می‌کنند،
کمتر از لایه‌های سطحی می‌باشد. (Badalov, 1972; Prikhod kov, 1979).

۲-۹-۲-۱-۲ وابستگی به گونه‌ای و وضعیت بدنی تهدید گونه از نظر IUCN
ماهیان کیلکها چشم درشت به همراه دو گونه دیگر کیلکا غذای اصلی برای ماهیان خاویاری شگک
ماهیان و سوف ماهیان است. لیست IUCN از نظر رده‌های تهدید که در بخش خوزستان در رده گونه‌های با "رسک
C. grimmii" که در بخش خوزستان در رده گونه‌های با "رسک" (Kiabbi et al., 1999) در سال‌های اخیر ذخایر این ماهی در کلیه بخش‌های
دریای خزر و از جمله پلدخ مشاهده گردید.
3-4 تهاجمات بيلوزيكي دريايي

1-3 تاريخه تهاجمات بيلوزيكي دريايي

در سال های اخیر با بپرسرت تکنولوژي، تهاجم گونه های غیر بومی به نواحی ساحلی دریاها و دریابی های داخلی جهان به طور فراوانی در زمینه صورت عمومی به خود گرفته است. تغییرات مختلف دربوزیتزی در اکوسیستم های دریا و بیابان هر چه بیشتر تغییر در شیوه های حمل و نقل سپر درون و رود گونه های بیگانه به اکوسیستم های بومی شده است.

در اوایل دهه 1990 پس از ظهور گونه های از دیاتوپسی به بومی مناطق معتدل به دریای شمال آمریکا بر می‌برد. در پروکش گونه‌های غیر بومی از طریق آب توزان کشتی‌ها مطرح گردید. در سال 1974 گونه دیگری از اکسینوس درید (Pleurosiga sinensis) در دریای شمال مشاهده شد.

شبکه‌ای مربوط به غیر بومی گونه ها می‌تواند تغییر در گونه‌های بومی گردد در این اثر منفی قابل مشاهده آتی خود به جا نگذاشته. با کشف نوعی بالانکتون سیمی در آب‌های استرالیا ضرورت وجود دستور عملي سرای تحلیلی آب توزان کشتی های بین دریاها رفت و امکان می‌کند بیشتر خود را نشان داد.

در سال 1991 سارمان بين المللی دریابوردنی (IMO) دستورالعمل برای جابجایی آب توزان کشتی‌ها (IMOS) تصویب کرد که به موجب آن کشتی‌ها می‌باشند در دیاب آب توزان خود را خلاصی کنند و در دریای آزاد از قسمت های عمیق دوباره آنها بسر کنند و رسوبات نانک آب توزان خود را در مناطقی دور از نواحی حساس خالی کنند (Coles, 2002).

در دهه 1980 اکوسیستم‌های رنگین و در تب‌بیش به تهجیم و نامطلوبی در سطح دنده اقیانوسی (Indo-Pacific) مراجعه کرده که جایگزین قبیل‌های (Oyster) بومی این جنگل‌های غیر بومی گردیدند.

از اواسط دهه 1980، گونه‌های بومی که به وسیله فعالیت‌های انسانی به اکوسیستم‌های جدید منتقل و رها شدند، یکی از انواع دیاتوپیک‌های جمعیت با افراد اکوسیستم‌های آنها، توسعه بی‌شمار سیستم به عنوان مهاجمان بیولوژیکی معرفی گردیدند و برای تهجیم بومی به گسترند خود به‌طور بی‌پایان و طبیعی گونه‌های اطلاق می‌گردد.
كونه های غیربومی، وارداتی، بیگانه، خا رجی، گونه های خی گرفته به اب و هوای جدید و گونه هایی فرصت طلب عبارات دیگری هستند که برای گونه های معرفی شده به اکوسیستم ها مورد استفاده قرار می گیرند. بر اساس دستورالعمل کنوانسیون نوع زیستی "گونه های بیگانه" گونه های هستند که به یک اکوسیستم جدید وارد می شوند و "گونه های مهاجر بیگانه" به گونه هایی اطلاق می شود که دارای اثرات منفی در اکوسیستم جدید باشند (2000).

نتیجه گونه های مهاجران که اخیرا به اکوسیستم های ساحلی جنگلی وارد شده اند در جدول ۲-۲ دیده می شود. بیشتر این مهاجران از طریق تحلیل آب توانزان کشتی های اقیانوس پیما و رسوبات موجود در خن کشتی ها وارد اکوسیستم های پذیرنده شده اند.

۲-۲-۱ ویژگی های اکوسیستم های پذیرنده

تهاب در بیولاژیکی بیشتر در اکوسیستم های دریایی رخ می دهد. این محیط گونه ها علاوه بر این که نظم طبیعی آنها در نتیجه فعالیت گونه انسانی و تردد گونه دریایی مخلل شده است، با حاملهای اولیه ای نضرآب توانزان کشتی ها نیز در ارتباط می باشد. به همین دلیل ممکن است در اکوسیستم های ساحلی دریایی که دور از دسترس انسان هستند و هنزه از طریق فلک های انسانی مگربش نشده اند نظری حاشیه جریان مرحله هاولایی نیز اندازه افتاده همچنین در اکوسیستم هایی با تتوسع گونه های کم مانند صخره های ساحلی باید در خلیج ماین (آمریکا - کانادا) نیز امکان تهاب در گونه های وارداتی وجود دارد.

۲-۲-۳-۱ الگوهای بوم شناختی تهاب دریایی

بر اساس این الگو ممکن است به سیستمی وارد شده و به صورت نادر بقای ممکن باشد و با این حال از ورود به اکوسیستم جدید پس از طی چند دوره زمایی جمعیت آن به شدت کاهش یابد. فراوانی گونه جدید یا عوامل بوم شناختی بیولاژیکی (فیتولوژیکی)، شیمیایی، بیولاژیکی و هیدرولوژیکی تنظیم می کند. حدود فراوانی گونه ها پس از هجمه به اکوسیستم میزانی از دو الگو به شرح زیر تعبیه می کنند:

الگوی A: بر اساس این الگو، ممکن است در ابتدا دوره تهاب تراکم جمعیت گونه وارداتی فوق العاده رشد شده و سپس، طی سالهای بعد فراوانی جمعیت آن کاهش یابد و در نهایت این الگو اغلب بر اساس حدسیات می باشد. به این حال تعادل بین جمعیت گونه مهاجر و منابع غذایی موجود و همچنین صدای آن
<table>
<thead>
<tr>
<th>اكوسيسم پذیرنده</th>
<th>نام گونه</th>
<th>اولین زمان مشاهده</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیموس / لیمانتا</td>
<td>Ensis directus</td>
<td>صدف خوراکی جارلر مارکان</td>
</tr>
<tr>
<td></td>
<td>Cladonema achidai</td>
<td>هیدرویند چینی لیمانتا</td>
</tr>
<tr>
<td></td>
<td>Neomysis americana</td>
<td>ماهی های ایالوبون‌های لبه</td>
</tr>
<tr>
<td></td>
<td>Oithona davisae</td>
<td>صدف درکه مو چینی</td>
</tr>
<tr>
<td></td>
<td>Musculista senhosiae</td>
<td>ماهی‌های درکه مو چینی</td>
</tr>
<tr>
<td></td>
<td>Phyllophora punctata</td>
<td>زنجیره‌های هدیر ایالوبون‌های لبه</td>
</tr>
<tr>
<td></td>
<td>Theora fragilis</td>
<td>صدف آسوی</td>
</tr>
<tr>
<td></td>
<td>Mnemiopsis leidyi</td>
<td>ناسانه در ایالوبون‌های لبه</td>
</tr>
<tr>
<td></td>
<td>Centropages abdominalis</td>
<td>کوبه بود زنی</td>
</tr>
<tr>
<td></td>
<td>Scapharca cornea</td>
<td>صدف پاسیفیک</td>
</tr>
<tr>
<td></td>
<td>Bythotrephes cederstroemi</td>
<td>کوبه‌ای نوروارن</td>
</tr>
<tr>
<td></td>
<td>Caulerpa taxifolia</td>
<td>جنبک سبز جز را</td>
</tr>
<tr>
<td></td>
<td>Undaria pinnatifida</td>
<td>کوبه زنی</td>
</tr>
<tr>
<td></td>
<td>Antithamnion nipponicum</td>
<td>گروه قرمز زنی</td>
</tr>
<tr>
<td></td>
<td>Salmooneus gracilipes</td>
<td>میکوی آسیایی</td>
</tr>
<tr>
<td></td>
<td>Asterias amurensis</td>
<td>سنگ توده‌ای</td>
</tr>
<tr>
<td></td>
<td>Charybdis helleri</td>
<td>چرخ‌چک حمله‌ای</td>
</tr>
<tr>
<td></td>
<td>Pseudodiptomus marinus</td>
<td>کوبه بود هکتی</td>
</tr>
<tr>
<td></td>
<td>Tenteridrilus mastix</td>
<td>کوبه چینی</td>
</tr>
<tr>
<td></td>
<td>Ostrea edulis</td>
<td>اویستر نوروارن</td>
</tr>
<tr>
<td></td>
<td>Phyllophora auriformis</td>
<td>جنگنده درکه مو چینی</td>
</tr>
<tr>
<td></td>
<td>Mnemiopsis leidyi</td>
<td>ناسانه در ایالوبون‌های لبه</td>
</tr>
<tr>
<td></td>
<td>Exopalaemon carinicauda</td>
<td>میکوی آسیایی</td>
</tr>
</tbody>
</table>

جدول ۷- نمونه‌هایی از سه جمجمه‌پیوستی‌های اخیر به دریاها و دریاچه‌های بزرگ جهان دریپست سال گذشته.

(GESAMP, 1997)
توسط سایر گونه‌های بومی و یا غیر بومی بستگی دارد و ناشی از واکنش‌های مختلف درون گونه‌ای باشد.

الگوی B: براساس این الگو ممکن است گونه‌های موجب دفع نیروی خود دچار نوسانات طبیعی جمعیتی شوند. شکوفایی بسیار و زیادی با نسبتاً کم‌کم گونه‌های مورد نظر که تابع شرایط محیطی می‌باشد، نمی‌توانند از این نوسانات است. تمامی میان این دو گونه خصوصاً در حال اولیه تهاجم بسیار مشکل می‌باشد.

(4) ۱–۳ وسعت آتشیان بوم شناختی گونه وارداتی پس از تهاجم

گونه‌های وارداتی پس از ورود به اکوسیستم پذیرنده مراحل متعددی را طی می‌کنند تا به صورت یک گونه مهاجم درآیند. این فرآیند ها شامل ورود گونه‌ها است و تا آن زمان گروه‌ها و گرده و غبار و گرده و غبار گونه‌های می‌باشد.

(Ricciardi & Rasmussen 2001)

گونه‌های وارداتی ممکن است در محیط جدید، جنبه‌های مختلف آتشیان بوم شناختی (کچ اکولوژیکی) خود را به صورتی نشان دهند که با وضعیتی که در فلمندرو بومی خود داشتند کاملاً مشابه می‌باشد. برای مثال، این گونه ها ممکن است بتای زوده‌تر محدوده و سیزولوی بازویی و یا افزایش شرایط مختلف زیست محیطی اکوسیستم جدید را نشان دهند. به طوری که به تدریس‌های مقداری جدید، شرایط‌های بازی بسیار محیطی جدیدی نمایند. این امر باعث می‌شود که شرایط محیطی و شرایط اجتماعی از طریق این نمایندگانی که در این محیط وجود دارند، به‌طور مستقیم یا غیر مستقیم تأثیر گذارchedule داشته باشند.

(5) ۱–۲۳ اثرات بوم شناختی گونه‌های مهاجم

برخی از گونه‌های وارداتی ممکن است به عنوان سببی که مردم به یک گونه بیشتر و یا گونه‌های احتمالاً در بوم شناختی کاملاً اشکالی برمحیط بگذارند. با لحاظ، ممکن است گونه‌های غیر بومی هیج اثر آشکاری بر شرایط محیط تحمیل نکند.

گونه مهاجم ممکن است گونه‌های ناشی از تغییر بومی را تغییر دهد. ممکن است بر سر این تغییرات غذا محیط طبیعی، نژاد و نور با گونه‌های بومی رقابت کنند و یا ممکن است طی فرآیند دو راه گذاری ممکن است از انتقال صفات شونده و همچنین با انتقال اراضی و بیماری‌ها سبب شویی بیماری در اکوسیستم بوده‌اند.
شرود. هر بک از این عملکرد ها بر نوع ریستی اکوسیستم پدیدانده اثرات را تحمل ما کند این اثرات را به طور کلی می توان به دو دسته تقسیم کرد:

1. اثرات کیفی
2. اثرات کمی

اثر کیفی، به گونه ای است که سبب تغییر و یا حذف گونه جانوری یا گیاهی خاصی می شود. برخی گونه‌های اصلی پذیر فرمکن است در نتیجه اثرات گونه مهامج به انقرض کشیده شوند. این اثر ممکن است به طریق مستقیم و یا غیر مستقیم خودرا بروز دهد.

اثر کمی به صورت کاهش و یا افزایش جمعیت (اشکوفایی) گونه‌های متاثر خودرو نشان می‌دهد و در عملکرد تنواع زیستی اکوسیستم نقش دارد. در نتیجه ورود گونه به گونه‌گی رگنه‌های متضرر شده و در مقابل آن گونه‌های دیگر ممکن است محیط مساعدتری را برای رشد و شکوفایی پیمایند و در نتیجه شبکه‌ها غذایی موجود در اکوسیستم پدیدار شیغیراتی را به تولید خرد و یا ضرر برخی گونه‌ها و به دیگر محیط علمی و فرهنگی مطرح می‌کند.

اثر نیز ممکن است به صورت مستقیم و یا غیر مستقیم تغییراتی جمعیتی گونه‌ها و یا مانور سازگار.

13 میدیریت و کنترل آب توانز کشتی‌ها

می شود (1998) 80/ نقل و انتقال جهانی کالاها توسط کشتی‌ها صورت می‌گیرد و طی این فاصله مسافتهای حکومت 10 میلیون تن آب توانز در مسیر منطقه جنوبی‌حا می‌شود. از این طریق هزاران گونه از باکتری ها و سایر میکرو ارگانیزم‌ها، به مهندسی کوشک نخن و لارو گونه‌های مختلف و حتی در مواردی ماهیان زندگی در بین دریاها جانجا می‌شود. برای داده است که در هر بار که یک تانک توانز در شود 4000 گونه در سرتاسر جهان از طریق آن حمل و نقل می‌شوند. نسخه صنعت کشتیرانی و افزایش سرعت کشتی‌ها و نیرو افزایش تجارت جهانی سبب گردیده است که در اولی کلکسیون گونه‌ها وجود داشته که یا باید. اغلب در این است که در هر 9 هفته یک گونه در اکوسیستم به اکوسیستم گذشته وارد می‌شود.

(Concil of Europe)
آب توآزن کشته‌ها را توزیع کمکی حفظ محیط زیست دریایی (MEPC) در مقیاس جهانی صادر کرد.

در این دستور العمل در باره دریافت، تعویض و تخلیه آب توآزن کشته‌ها اطلاعات لازم ارائه گردیده و به عنوان سند شماره (18) توسط IMO در سال 1993 پذیرفته شده است.

مهمت مهمی کننده کشته‌ها به منظور پیش‌گیری از انتقال گونه‌ها از نقطه‌ای به نقطه‌ای دیگر، آب توآزن خود را در دوباره برگ (آب‌های آزاد) تعویض کنند. در سال 1997، کشورهای عضو دستور العمل داوطلبانه ای را برای کنترل و مدیریت آب توآزن کشته‌ها به منظور به حداکثر رسیدن انتقال مصر گونه‌های مهاجم تحت عنوان سند (20) 868 تصویب کردند.

(ICES, 2001) مواردی از پیشنهادات موجود در این دستورالعمل به شرح زیر می‌باشد:

1. به حداکثر رسیدن ورود موجودات به هنگام بر کردن آب توآزن از طریق عدم آب گیری در نواحی که شکوفایی جمعیت دیده می‌شود مثلا در آب‌های ساحلی کم معمول.

2. تمرکز کردن تکه‌ها آب توآزن و زدودن گل و لای و رسوبات بر اساس یک فاصله و نظم مشخص.

3. تعویض آب توآزن در دریای آزاد، باید از رسیدن به بند و یا کارگردانی آب تعیین اقدامات آزاد با توجه به انگیزه اجرای این دستور العمل ها بسیار وقت گیر می‌باشد مناطق مختلف کشوری خود را ملزم به انجام بین اصول نموده و گونه‌های مهاجم همچنین اکوسیستم‌ها و موجودات دریایی را تهیه می‌نمایند.

کنون‌آنی‌ن ممکن است به کمکی نیز در بینجمن و شش می‌باشد حداکثر دستور العمل‌هایی را بایستی ممکن است از ترک گونه‌های مهاجم به اکوسیستم‌های آب‌های خیلی و نیز خزه و به حداکثر رسیدن اثرات سوء آن‌ها ارائه کرده است. برابر این دستورالعمل های:

- کشورهایی که از ورود گونه‌های بی‌گاوانه به اکوسیستم‌های جلگیری نموده و در صورت ورود گونه‌های بی‌گاوانه به اکوسیستم‌های جلگیری نموده.

- کشورها، پرکش کننده‌ای از استقرار و یا پراکنش گونه‌های بی‌گاوانه و خزه آن در مراحل اولیه ورود نشود. در صورتی که خزه کامل گونه بی‌گاوانه به نظر هزینه، منفعت امکان بی‌هدف نباشد، باستانی از

"Guidelines for the Control and Management of Ship’s Ballast Water to Minimize the transfer of Harmful Aquatic Organisms and Pathogens".
برانکش بیشتر آن جلوگیری نمود و با کمک ابزارها و روش‌های مختلف جمعیت آن را در درازمدت
کنترل کرد (CBD, 2000).

7. 3- روش‌های کنترل جمعیت گونه‌های مهاجم در اكوسبستم‌های آبی

استراتژی کنترل گونه‌های مهاجم اقت در محیط خشکی تاریخی را به نیازهای جنگین قدرن دارد. اما
در اكوسبستم‌های دریایی، این استراتژی‌ها در مراحل ابتدا را در خود قرار دادند. استراتژی تفکر
ر مدیریت گونه‌های غیر بومی در سه طبقه می‌گذارد:

1) جلوگیری از ورود گونه‌های خارجی;
2) نابودی و با کنترل گونه‌های وارداتی;
3) جلوگیری از برانکش بیشتر گونه‌های بیگنا نه.

استراتژی نوع اول از طریق رعایت عنوان سندرم شماره 18 (IMO, A.774) تحقق می‌یابد. در استراتژی
دیگری از ورود گونه مهاجم بسیار حائز اهمیت می‌باشد.

این استراتژی ها هدف زیر را دنبال می‌کنند:

1) حرکت کننده، تا آن را به طور کامل از اكوسبستم بیرون کنند. یا
2) تنظیم فراوانی جمعیت یک گونه در منابع محیطی که به آن معرفی شده‌اند و با در پیشگیری از آن،

به منظور کا هش اثرات آن گونه بر اكوسبستم.

در مورد اکثر گونه‌های مهاجم در دریاها بزرگ این توانایی وجود دارد که نابودی کامل جمعیت
مهاجم به دلیل وسعت دریا غیر ممکن می‌باشد. بنابراین روش‌های کنترل با استفاده از استراتژی
جمعیت و پویا باید از کنترل جمعیت به شرح زیر می‌توان ارازه نمود (GESAMP, 1997):

1. کنترل مکانیکی

این روش معمولاً فرآیند نواحی تیمی در رشته گسترش نمی‌یابد و به دو طریق صورت می‌گیرد:

الف) حذف مکا نیکی افراد اکثر اکثر گونه‌ها برای استفاده گونه‌های دیگر
ب) تحریب مکا نیکی افراد در محیط (برای شباهت موجودات، بازی توان تجدید نسل نمی‌شود).

47
کنترل شیمیایی

روش سوزنی شیمیایی و نحوه مواد خاص برای گونه های مختلف. این روش ممکن است فراورده نواحی تیمار شده پرآکشی شود. اما اگر نیمه عمر اول مواد کم باشد پرآکشی آن ها محدود می‌شود.

کنترل گیاهی‌پروری‌کننده

اگر روی تراش مهار مواد شیمیایی دارای اثر مهار کننده است این مواد نیز در واژن نواحی تیمار شده پرآکش می‌شوند. اما شاپید پرآکش آنها (به ویژه انگر نیمه عمر این مواد کوناها نشان می‌دهد) محدود شود. تداخل متابولیک (ارتباط تداخل در تغذیه و یا حركت) و تداخل در جریه حیات مثال هایی از اعمال‌کردن این نوع مواد می‌باشد.

کنترل زننده

دستگاهی زننده در گونه های مهاجم به منظور کاهش ظرفیت تحمیل زیست محیطی سارش پذیری و غیره در گونه‌ها

کنترل بوم شناختی از طریق تغییر در ترکیب زیستگاه (دستگاهی محیط زیست)

محیط زیست با رویدن های فیزیکی با شیمیایی تغییر می‌کند. به طوری که:

الف) گونه های هدف تأثیر می‌پذیرند.
ب) گونه های کنترل کننده زیستی (پرو کنترل ها) افزایش می‌بندند. این امر ناشی از بهبود محیط زیست (کاهش آلودگی) شود. این روی ها ممکن است به صورت فراوانی ای اثر کنند.

کنترل بوم شناختی از طریق معنی‌پذیری بیا فرایش گونه‌ها

شامل معنی‌پذیری به جای گونه سیگنال نه و یا تقویت یک یا چند گونه‌های بومی است.

ابن روش توان بالقوه ای برای گسترش در ورود منطقه تیمار شده دارد. آرایه های بومی و بیگانه عبارت از:

الف) اگل‌ها و ایلام عقیم کننده
ب) شبکه ای‌ها
ج) عوامل بی‌پای را
د) شکا رچانی که باستی برای سطح و برخی از امریان تعیین شوند.
ه) وقیبان
Ctenophora

4- شانه داران

1-14- خصوصيات كلي

قرر دارد. این جانوران را اغلب "لدکه های شانه" (Comb jellies) و "شانه داران" به معنی "phanos" و به معنی "شانه" و "Cteno" به معنی "شانه" در مجموع اغلب در مرشد و در نتیجه اطلاعات نسبتاً کمی در دوره

تشکیل هستند. که معمولاً در آب‌های جنگلی بین بینند. این موجودات شناگران آراد (Plankton) ضعیف هستند، که معمولاً در آب‌های بین بینند. این موجودات دارای خاصیت زیبای بی‌سیاری و برخی دیگر نسبتاً در هوا و در هوا و

اومکانی که باشد طبیعی فلاش‌های نورانی دارند.

شانه داران اغلب به عنوان گروه خواهری مرغانی (Cnidarians) تفاوت شناوی و دارند. علیرغم شباهت های اندکی که در کل هستند سبب می‌شود با مرغانیان در بالا طبقه قرار گیرند. این دارای دیگر گونه‌های از همدان است. هستند. و به علت داشتن خصوصیاتی مشابه حیوانات تخم‌گذاری متمایز در شاخه ای مکزا نورانی دارد.

2- صفات اخصاصی

1. دارای تقارن دوگانه (شانه) روی یک محوردهنی - مقابل دهانی (Aboral) هستند.
2. درجه‌بندی در آنها وجود ندارد.
3. دستگاه عصبی یکنواست و در آن یک اندام حسی مقابل دهانی وجود دارد.
4. دستگاه گوارش دارای دهانی. حلق مدفوع و کانالی حاوی منشین می‌باشد.
5. جنس هایی بزرگ و ماهی‌ای یکنواست و جانورهای دریایی می‌باشند.
راشدنموده‌ای آن‌ها به صورت مستقیم است.

۷. دارای همست رتیفیف صفحه شانه‌ای هستند.

۸. دارای دو عدد شاخک (Tentacles) می‌باشند.

در این جانوران هنگام کشتن واقعی وجود ندارند. گران باشد. یک دن زنده‌اند آن‌ها که مهم دراکراکی شکل است. از
دو لبه سلول به توصیه یک لبه غیرسلولی به نام موزگالا
از هم جدا شده‌اند. تکامل می
شد. دیواره بدن آن هاشالی اکسترموم و آندودرم بوده و گاهی‌کن چه مورد مزارک دارند.

۳-۴-۱- زیستگاه و شخصیات زننار

شانه‌ی داران در دریاها یا دریاچه‌ای گرفتن می‌شوند و بعضی نیز در نواحی جنگل‌های بی‌نیاز. بیشتر آن‌ها در
بندر یا سطحی پناهی‌کنند و در برخی از آن‌ها در اکوسیستم متنوع سردر می‌برند.

آنها در آب به حالی برمی‌آیند می‌شوند و قادرند به سطح آن‌ها کند. جراین های دریایی و یا جوی می‌شوند.

می‌توان است آن‌ها را به تعداد زیاد در کنار هم متمرکز کنند.

شانه داران موجودی بسیار یک دن‌دار هستند. آنها قادرند در انواع زیستگاه‌های دریایی، در دامه
و سبیعی از ازابیت شوریه، دما و شرایط منفی از انتها یک دنگی کنند. بیگ جانوران عموماً وابسته به
نوع غذایی خاصی نمی‌باشند و در ناحیه‌های مختلف و او جو و وجود ندارد. می‌توانند با کاهش اندازه
بندهزیم بی‌مانند.

۴-۵-۱- تغذیه و گوارش

شانه داران با وجود ظاهر طبیعی، اکثراً گوشاخوار هستند. غذای آن‌ها گسترده و سبیعی از انواع اشکال
ریخته‌ها یا نوری شیا ملی پلاکت ها یا موجودات سرگردان دریا می‌باشند. سری‌سازی‌ها منفرش شده
توسط این موجودات شامل ماهیان کوچک، سخت بی‌روستا، کرم‌ها، انواع‌یا واحدهای سبیعی همان‌که
می‌باشد.

۵-۶-۱- تولید مثل

تمام شانه‌ی داران دارای شکل بلند، هرم‌افرویدیت هستند و اکسترموم به صورت هوشمند رودریجی می‌باشد در دریک فرد و وجود دارد. اکسترودوم به صورت پرشوند آندودرم رودریجی در زیست‌شناسی واقع شده‌ای‌که قرار دارند.

نمک و آب مانش ترکیب این اندازه‌ای ایجاد می‌شود. سلول‌های جنسی رسیده از طریق د همان خا رج
شانه داران درمیان مختلف به طرف مشتاقی رده‌بندی شده‌اند. این جانداران بسیار طبیعی و شکنند. هستند و به هنگام نمونه برداری قسمت‌های مختلف بدن آن‌ها آسیب می‌می‌دند. این امر رده‌بندی آنها را مشکل می‌سازد. به طور کلی درکلیه میانج میانج شانه داران به دو رده تقسیم می‌شوند:

1. Class Nuda
2. Class Tentaculata

- 1 رده: Nuda
- 2 رده: Tentaculata

اختلاسی که در متون گوناگون در باره رده‌بندی این جانوران وجود دارد بیشتر به طبه بندی راسته‌های جانوراده‌ها و جنس‌ها مربوط می‌شود. در این نوشتار ناوت مختلف رده‌بندی های دیگری ذکر شده است. درای عینی می‌تواند

لطفاً توسط بنیادی هاربیسون:

(Harbison, 1991), (Harbison & Maddin, 1982)

براساس لیست ارائه شده توسط هاربیسون، شانه داران به دو رده تقسیم می‌شوند:

CLASS TENTACULATA

1 - رده تنتاکولات‌ها

جانوران این رده دارای دو شاخه دراز هستند. که به آسانی قابل تشخیص است. به علاوه، گونه‌های موجود در این رده در انتهای مخور موجب جنایت‌های ویا مخور مشکمی بینی بهینه می‌شوند. رده تنتاکولا ت‌ها به شرح زیر تقسیم می‌شود:

Ganeshia 1 - راسته
Platytenida 2 - راسته
Cestida 3 - راسته
Lobata 4 - راسته
Thalassocalynda 5 - راسته

CLASS NUDA

3 - رده Nuda

اعضاء این رده تنتاکول ندارند و بدون آن هاوتبقی‌ا به شکل انگشتان است. جانداران این رده به نادرت

دارای یک سیستم وربدی - روده ای منشأه هستند. درکلیه رده‌بندی بندی‌هایی که برای شانه داران تعیین شده آستن، این رده به‌نام راسته (Beroidae) و یک خانواده (Beroida) دارد.

51
ب - رده بندی میلز:

کلودیا 1 - میلز (2000) شانه داران را به دو رده تنشاکولانه و نودا تقسیم می‌کند. سپس رده تنشاکولانه را با شرح زیر رده بندی می‌نماید:

1) زیررده (1928):
 - Cydippida
 - Platycetenida

2) زیررده (1985):
 - Cyclocoela (Ospovat)
 - Cambojiida
 - Thalassocalyctida
 - Cryptolobiferida
 - Ganeshida

3) راسته:
 - Cestida
 - Lobata

چ - رده بندی براساس فهرست رورپایی کوه‌های دریایی (ERMS):

براساس آخرین فهرست ارائه شده توسط ریچارد وايت (2000) شانه داران به جهار راسته برهنگی:

1) راسته:
 - Cydippida
 - Cestida

2) راسته:
 - Berodia

3) راسته:
 - Lobata
Mnemiopsis leidy A. Agassiz, 1865

Ctenophora Eschscholtz, 1829
Tentaculata Eschscholtz, 1825
Lobata Eschscholtz, 1825
Bolinopsidae Bigelow, 1912
Mnemiopsis L. Agassiz, 1860

Mnemiopsis leidy A. Agassiz, 1865

M. leidyرا، من صفتي من حيوانات ميتيال الجنس Mnemiidae. في عام 1865، ذكر كردها أن M. leidy را، من صفتي من حيوانات ميتيال الجنس Mnemiidae. في عام 1865، ذكر كردها أن

a) در سال 1825، Eschscholtz
b) در سال 1826، Rang

در سال 1832، Eschscholtz

در سال 1841، Mertens

M. leidy

در سال 1841، Mertens

در سال 1860، Gould

Cape Cod در سال 1865، L. Agassiz

Cape Cod در سال 1865، A. Agassiz

b) M. leidy

M. leidy

Cape Cod

M. leidy

M. leidy

L. Agassiz

M. leidy

A. Agassiz

Cape Cod

A. Agassiz

Cape Cod
يرتبط بين كونه دو كونة متضاد معرفتي شده است كه عبارت آز 1990

Mnemiopsis mccradyi Mayer، يناسب.

Mnemiopsis gardeni

٢٥-١٠ - توصيف كلي

do t، دهاليز از ٢٠ جانور مشتق شده است. جهار لب كوجكتر زرير دو لب اصلي دهاني فرارگرفته اند.

حلقه های تناسکی روی دو أوربه دهاني قرار گرفته اند. بخش مرکزی آن در بالای کناره های شکاف دهانی واقع شده. هر دو این لب ها بمبار قابل انقباض هستند. آنها یک آوریه کاملاً مشخص در قسمت میانی دارند که به درون انتهای کناری کنال حلق امتداد می‌یابد.

Mnemiopsis leidy (A. Agassiz, 1965)

subtentacular row of comb flappers (١) اندام مقابل دهانی ٢ aboral organ

(٢) رده‌ی شانه‌ای زیر تناسلی ٣ auriculus

(٤) شبکه‌ی زیر انتاسکی ٥ subagittal row of comb flappers

lobe (٦) لوب های انتاسکی ٧ Atentacular tube، v transglobal tube

(سبع : Shiganova 2000)

پیرامون انتهای بیرونی هر دو "جهار کنال لب مانند لبه در عبور در که توسط انتهای بیرونی دو شانه کنال حلق تشکیل شده است. تناسکی روی بالای لب دهانی قرار دارند. برآمگی تناسکی روی دو نب ساخته شده‌اند. این لب ها توسط برآمگی تناسکی با نوعی روکش دو نبی محورش می‌شود. این روکش قابل انقباض می‌باشد. تناسلی های رشته‌ای از بدن کنال های بخش‌ عمومی از لبه دهانی و میان بدن شانه دار (sphaerosoma) و لب ها در جایی به دو قسمت کاملاً فریب می‌شود. در
امتداد بهلوهای بدن جانور کانالهای تصف النهاری عبور می‌کند. زیر این کانالهای فرعی شانه‌های نامیده می‌شود. چراچوب آنها از کانالی با لوله‌های زیر سازنده ساخته شده که زیر هر ردیف از آنها شانه‌ها قرار دارند. انتهای کانالهای تصف النهاری به کانال‌های دهلیزی ختم می‌شود که در بالای آنها شانه‌ها دهلیزی قرار دارند. میزان رشد فلز زیر سازنده و دهلیزی همیشه یک فاصله و وجود دارد. امتداد طرفین بدن جانور از تنابک‌های دو لبه، رشته‌های تنابکی با به اطراف دهان و یقه‌ای به جلو ادامه است. انتهای آن ها از یک تشکیل شده است.
Sphaerosoma
اندام بیمار کارآمدی بین سطوح درونی لب یک تکاری و سطح تشکیل شده است.

صفحات شانه‌ای چهار چوب خا رگی بدن را تشکیل می‌دهند. در روز صفحات شانه این مژه‌های موجود دارد. این مژه ها موج حركتی خاصی انجام می‌دهند که در اثر گذشت از آنها آن مجهز می‌شود. این هزینه به انتهای قدر است گردد. این موج به انتهای حرکت می‌گردد. جانانه ناحیه دهانی بنا به دلایلی سبب بینند حرکتی به مکانه می‌کند. حرکت مژه‌ها به سادگی عقب نشینی کنند.

مژه‌ها از انتهای مقابل دهانی بدن مشاهده می‌گردد و روی شانه‌ها در از بین از انتهای دهانی بدن می‌شود. این حرکت به عنوان یک موج مژه ای محور می‌شود. این حرکت به عنوان یک موج مژه ای محور می‌شود. این حرکت به عنوان یک موج مژه ای محور می‌شود.

شناخه شانه است. شانه‌ها با حرکات و ضربان سریع به طرف انتهای مقابل دهانی می‌زننده (Metachronal) و موج حاصل از این ضربان از انتهای مقابل دهانی بدن به طرف انتهای دهانی در امتداد هر روز بیدار می‌شود. این حرکت به عنوان یک محور ناخورشانی، محیطی حرکت مژه‌ها می‌توانند مکانه شود و این آنگه حیوان انجام می‌دهد به طرف جلو یا عقب حرکت کند و حاصل آن عقب نشینی فوری جانور می‌باشد.

کیسه تعادلی (Statocyst) اندام کوچک تعادلی است که در ان جسم کوتکه به نام سک تسک تعادلی با استاندارد شیارها می‌وزد. این کیسه تعادلی با همان کیسه تعادلی با حرکتی قرارگرفته و ارتباطی بین آن دارد با تغییر در طبقه کاننده. اگر کیسه تعادلی انسپب بینند شانه‌ها از عمل هم‌اکنون بار می‌ماند. همچنین این اندام (استاندارد) به حیوان کمک می‌کند تعادل خود را در آب حفظ کند.
Mnemiopsis leidyi

Shape of M. leidy

(CEP, 2002a)

Shape of M. leidy

(CEP, 2002a)

Shape of M. leidy

(CEP, 2002a)
از آب های Cape Cod (۴۱°N، ۷۰°W) در امپریکای شمالی تا شبه جزیره والدنز در آرژانتین (۴۳°S، ۵۴°W) گسترده شده است. (Harbison; 1998, CEP; 2002a; Kideys & Shiganova, 2001) این جانور در سال ۱۹۲۲ از طریق آب نواره و رسوبات جنوب از کانادا به آمریکای شمالی وارد شد که از منابع قاره آمریکا به سمت دریاچه سیاه حرکت می‌کرد. به این دنبال هم، در دریاچه‌های کانادایی و امریکایی به شرک و افزایش جمعیت در دریاچه‌های غربی به رشد و افزایش جمعیت خود کرد (GESAMP, 1997). اما در حال حاضر جمعیت آن در این دریاچه‌ها روز به روز کاهش ناپذیر است.

Menemopsis Leidy

شکل ۳۳- نقشه پراکنش جهانی

مکان: منبع: Regional Biological Invasion Center

ورود به دریاچه‌های روده را در سواحل گسترنش آن در دریاهای آزربایجان، هرمز، از شرق و مدیترانه شرقی باز نمود (۲۰۰۲). (Shiganova, 2002) در اواخر نوامبر سال ۱۹۹۹ تا ابتدای سال ۲۰۰۰ در سواحل شرقی خزر مبتنی بر توسط محققین روسی تهیه گردید (Ivanov et al., 2۰۰۰) و در بهمن ماه سال ۱۳۷۸ حضور آن توسط محققین ایرانی در سواحل جنوبی خزر جنوبی کراچو شد (اسماعیلی و همکاران، ۱۳۷۸).
پیک گونه آنوری هالین است که قادر به تحمل گسترده شوری از ۶۰/۴ تا ۸۰/۵۵ درصد است.

3در دریای آزوف بوده است. در دریای خزر نیز حد
پایین تحمل شوری برای آن ۴ درصد در خزر شمالی می‌باشد.
در گسترده‌ای از M. leidyi
(Harbison, 2001)
قادر به رشد و تولید مثل است.
در مدت زمانی در آب‌های بادامی از ۴ درجه در رمستان تا
۳۱ درجه در رمستان نا
در نابستان‌ها گونه شده است. در دریای سیاه این گونه در
(Shiganova, 2002)
در دریای آزوف و فنی دما‌به
دما
ِی C زیر ۲ درصدی زیر
ژیر ۴ درجه در مرگ و میر جمعیت در این گونه دیده شده است.
این گونه در دریای خزر قادر است متوسط دما از ۱۶ تا ۲۷ درجه در خزر شمالی در فصل
(CEP, 2002) ۲۷ درجه در رمستان تا
۵۱ درجه در رمستان می‌تواند در فصل نابستان را تحمل کند.
جنوبی دریای خزر به رشد آب‌های ایران اندامده جمعیت طی ماه‌های دسامبر تا ژانویه کاهش می‌یابد. در
این زمان دمای آب به
و ۸۰ درجه و بادان درجه جمعیت به کمک می‌شود.
در بهار شروع به رشد می‌کند و در اوایل بهار تولید مثل می‌نماید. این یک طیف در خزر M. leidyi
میانی در زوالی و در خزر شمالی در اواخر زوالی - اوایل دسامبر رخ می‌دهد. برگزاری اندامده
ظرف‌های زوالی - آگوست دیده می‌شود و اندامده آن از شمال به جنوب کوچک نر می‌شود
را در دریای خزر در سال
(Shiganova, 2002)
. ۲۴ - تغییرات فضلی تراکم و بیوماس
M. leidyi
۲۰۰۱

58
بهشکاری نمو پلاکنتون ها نمی‌توانند این مواد به همراه سایر غذاها مصرف M. leidyi در این حالت می‌شود.

طبق تغذیه‌ای M. leidyi با توجه به فصول سال و ساعت مشابه روز متفاوت است. گونه‌های کوچک بستن‌گونه‌های کلاودوسرا را ترجمه می‌دهند در حالی که گونه‌های بزرگ‌تعدادی از کوچه‌ها به‌طور میانگین تحت‌نظارت این می‌باشد. همچنین درصد سیب‌سیب‌کُشی نرم، ماهی و لاور ماهی و سایر بین‌میوه‌ها کان‌نیز در روزیم تغذیه‌ای آنها دیده می‌شود. میانگین نبودن شکار بین 0.7 – 1 میلی‌متر می‌باشد.

این جاندار بیشتر در حال شکار است و حتی اگر مقدارٌ بال‌تر باند نیز، همچنان به حوزه‌ای ادامه می‌دهد (Harbison, et al., 1978) و غذا اضافی را به صورت قطعات کوچک گردیده که در مکوس پیچیده شده‌اند پس می‌دهد. تصاویر میکروسکوپی این مواد در شکل- 3 دیده می‌شود که توسط نگارنده‌های فیلتر شده است. بستن‌گونه‌های M. leidyi نرم‌تغذیه‌ای در دریا و در دو پیوجه سطح‌دار و در لایه‌های سطحی آب می‌روی کوچه‌پوست تقریباً 70% با یک می‌شود. در زیستهای گلی نرم‌تغذیه‌ای 40% در بالا می‌باشد. زمان‌های نسبی با توجه به اندازه شکار در دمای C 30 – 40 در بالای معمولاً 2 – 3 ساعت به طول می‌انجامد. با افزایش زمان بلع غذا زمان هضم نیز افزایش می‌یابد. بررسی‌هایگزاره‌گاهی نشان می‌دهد، زمان‌که تراکم کوچه پوست در میکروتی‌بند باشد در میکروتی‌بند محدود تعداد بازوی زیادی کوچه پوست قابل تشخیص دیده می‌شود. اما زمان‌که تراکم کوچه پوست در میکروتی‌بند این موجودات هضم‌شده می‌باشد (CEP, 2002a) به راحتی قابل تشخیص نمی‌باشد.

مکان‌یابی شکار در این جاندار بدن بسیار رنگی است که جانور به سمت شکار شنا می‌کند. در این حالت قسمت دهانی مانند بال کاملاً باز می‌شود. در این حالت از سطح درونی نیز هم‌اکنون و تحت‌نظارت سایر همانی (Baker&Reeve 1978) ماده چسبندنی ای برای گرفتار کردن شکار ترشح می‌شود (Colloblasts). جلبانی. ماده چسبندنی ای برای گرفتار کردن شکار ترشح می‌شود (Colloblasts) (Baker&Reeve, et al., 1978)

جریان زنده مزه‌ها شکار را به سمت حل چلدزای می‌کند. دهان به یک حلق و ورید روده‌ای اتصال بیدا می‌کند. دهان‌های زنده مزه‌های با حاصلادن انتشار دارد که ناحیه دهانی نامی‌زده و دهان‌هایی از این دهان به‌طور محرک، ناحیه مبالایی به‌طور محرک، ناحیه‌های داخلی می‌شود. غذا در مروی تا اندازه‌ای هضم شده و بیشتر با که بوسیله‌های کننده به‌طور دو هم‌اکنون می‌شود به تمام قسمت‌های میانی دو می‌شود. این که بسیار و بسیاری به‌طور کامل شکار در هم‌اکنون
گوارشی، گردش می‌کند. مواد غیرقابل هضم توسط در کانال به منافذ کوکی در سطح بدن باز شده و از این طریق دفع می‌گردد. کلیه مراحل فوق به طور مستقیم در آزمایشگاه توسط نگاشته شده است و شکل های ۱-۲ موجود در فصل ۳-۴ نشان دهنده آن می‌باشد.

در میانجی قرار گرفته که تراکم گذاشته‌های حدود ۳-۱ کیوی بود. در تجربه آزمایشگاهی دیگری، در تحقیقی در کانال به منافذ کوکی واقع گردید. طی این شرایط پس از گذشت ۲-۳ بیوت کاهش یافته، در هفته اندامه آن ۲-۳ بیارت کاهش یافته (CEPT، 2002a). در شرایط بی غذایی قادر است از طریق کاهش وزن بدن به بقا خود ادامه دهد (Kremer، 1979) و نخ متابولیسم در جاندار گرسنگ به ۴ برابر کمتر از جانور کاملاً سیر می‌باند (Kremer، 1982) و قادر است به مدت یک ماه در شرایط بی غذایی زندگی بیمار. (Harbison، 2002).

۵-۱۰- تولید مثل

یک موجود هرمافродیت است که توانایی خودلقاحی را دارد و بسترهای زاد و ولد تنها با M. leidyi وجود یک فرد بالغ نیاز امکان ندارد. پدیده‌های پدوزنستی و Paedogenesis (بلوژ جنسی) آرا و جاندار نابالغ (Dissogony و دیسگونی) و قادر است به مدت یک ماه در شرایط بی غذایی (Harbison، 2001; CEP، 2002a، Shiganova، 2002، GESAMP، 1997) نتایج بدن شده است.

اندام های نوآمیلو نر و ماده در قسمت‌های جدایی‌نامه از دریک فرد وجود دارد. این اندام ها در زیر هشت رده صفحات شانه ای قرار گرفته و بین شانه ها تغییر شده اند. این دریک کانال در سطح این کنال به نزدیکی این کانال ها قرار گرفته اند.

۲۵- اشکال

نخ ریزی در اولین شب آغوش می‌شود و اوج آن ساعت از نیمه شب می‌باشد. افراد درختن همزمان ۲-۳ هزار نخ تولید می‌کنند. در زیستگاه اصلی این گونه هایی درشت تری تولید ۱۴-۱۰ هزار نخ می‌باشد.

۱۵ میلی متر می‌رسد M. leidyi مطالعات انجام شده در دریای خزر نشان می‌دهد که وقتی طول بدن به ۱۵ میلی متر می‌رسد جاندار قادر به تولید نخ می‌شود.
M. leidyi

شكل - 25 - انقام های نیلی متصل در

(A) کنال های نصف النهاری (Meridional)
(B) (C) (D) وضع ها - (H) نظم ها

در مطالعات انجام شده در باره آنانومی کناد ها ولعاق در دریای سیاه، محققین دروازند تحت رؤیت ضبطی نور و در دمای C 25 - 31 درجه تحکم کامل ها در ساعت 18، تخم ها در مرحله اوزونر. پس از ساعت 20 و عمل تحکم ریزی در ساعت 21 تا بک برای مانند انجام نشده. با تغییر دما از 25 - 31 درجه زمان رشد جنینی به جای ساعت 21 10/5 درساعت 11 صبح انجام شد، تحکم ریزی زمانی آغاز گردید که دمای سطحی این به C 25 درجه (GESAMP, 1997, رصد) این مطالعات نشان می دهد که مهمترین فاکتور فیزیکی که برای نیلی متصل اهمیت دارد دوره حرارت می باشد.

مراحل رشد جنینی در لایه های فوقانی آب در دریای سیاه و در دمای C 33 درجه حدود 24 - 40 ساعت به طول می انجامد. جنین کاملاً درون بیلیش اصلی تخم تشكل می شود و اندازه آن حدود 14 mm 1/12 است (شکل 26 - D) زمانی که لارو موفق به تحرك می شود بیلیش تخم نرم و قابل ارجاع می گردد.

اندازه لارو حدود 13 می باشد در آرماشگاه و در دمای C 27 درجه پس از 10 روز طول آن به CEP, 2002a.

30 می رسد و پس ز 20 روز اندازه آن به 38 می باشد (CEP, 2002a)
شکل - 36 مراحل اولیه زندگی Mnemiopsis
(A) نخ خم جدید
(B) جنبه حدود 30 ساعت که هنوز در نخم است cydippid مرحله لاوی (C)
جنبه 32 ساعت (D) منبع : Shiganova, 2000

ماکتیموم اندامه M. leidyi در زیستگاه اصلی آن 120 - 1000 mm است و در دبیای سیاه نیز ماکتیموم طول کورش شده برازی این کونه همیشه متضاد است. اما در دبیای خزر ماکتیموم طول نیست. مسئله آن در آب های خزر شمالی Vt mm 76 باشد (CEP, 2002)

1 - 6 - خود ترمیمی

در صورتی که قسمت هایی از بدن M. leidyi آسیب ببیند و فقط یک سوم و یا یک چهارم بدن باقی بماند قسمت های بقیه منابع توئاتوی ترمیم بدن را دارند. اندام را حین جانور به همراه نهایی صفحات بین توئاتوی را برای شانه دار ایجاد کرده است. شواید چندین نشان می دهد که مکان ترمیمی بهبود (Kideys, 2002, CEP, 2002)

7 - 1 - روابط بین گونه ای

در زیستگاه اصلی سه فاکتور فراوانی M. leidyi در زنجیره اولیه مشخص می دهند. اولین و مهمترین عامل فاکتور دما می باشد. فاکتور بیشتر یا بهتر از مراحل مختلف زندگی چیزی از نظر کسب و جمع از نظر کسب و جمع دومین عامل و کاهش مراکز و میزان نشان از وجود شکارچی، نگلها و بیماری ها سومین عامل می باشد (Kremer, 2002)
فیتی بیماری های و شکارچیان

هرچه بیماری مشخص و هرچه نوع ویروس، باکتری، قارچ و یا عوامل پروتئنزی که قادر به بیمار کردن شانه دارند و در امریکای شکارچیان مهربانی و بی مهره بسیاری را شکار می‌کنند و گزارش‌های حسابی از کنترل

تراکم جمعیت آن، توسط مسلمان یا کروه جود دارد (GESAMP 1997

نوعی از کیسه‌های شانزه از جنس (Chrysaora quinquecirrha) (Siphomedusa) نام‌یابی شده است که در بومی امریکای شمالی بروئه (Beroe) حضور دارد و می‌توانند مهربانان به سبب این دو گونه وجود دارند. این بی مهره کنن نرخ تولید منشی
نزدیک نرخ تولید مثل M. leidyi منبج مجمعیت M. leidyi را کنترل کند.

در حال شکار یک Beroe ovata (a) نگذشته می‌کند. M. leidyi منبع: (a) Shiganova, 2001; (b) Harbison, 2002b)

نرخه داران زیادی از قبیل ماهی‌های شاسانی یا رودخانه‌ای شناسایی و کنترل می‌شوند. M. leidyi (b) Chrysaora quinquecirrhra منبع: (b) Shiganova, 2001

نرخه داران زیادی از قبیل ماهی‌های شاسانی یا رودخانه‌ای شناسایی و کنترل می‌شوند. M. leidyi در زیستگاه‌های دریایی و دریاچه‌ها از گونه‌های مختلف ماهی‌های زیر M. leidyi تعیین می‌شود که به شناسایی و کنترل می‌شوند.

در امریکای شمالی نوک ماهی از جنس P. paru و P. burti و P. triacanthus های زیادی شناسایی و تعیین می‌شوند. P. triacanthus که از M. leidyi به شناسایی و تعیین می‌شود که طبق خلاقانه‌های موجود M. leidyi به شناسایی و تعیین می‌شوند (Harbison, 2002b (Rhode) و جزیره رود (Narragasett) (شکل 2-9)

Peprilus triacanthus نوعی ماهی از نگذشته می‌کند می‌کند. M. leidyi منبع: (Harbison, 2002b)
Beroe ovata

شانه نزان یری بالانکشن خواری مانند M. leidyi (Shiganova,2002) و نوزاد ماهیان کد plexurobrachia pileus (Shiganova,2002) و شیبی که بزون اهدای می‌کند (Arashkevich et al.,2001) . ممکن است کمترین تعداد قابل توجه توسط 5% تولید شده در نوزاد کمتر از 50% فاصله ژنتیکی به لحیب Shiganova هنگام تغذیه می‌کند و بی حرفکت می‌ماند و در نوزادی 30% بی حرفکت مانده و می‌میرد (Shiganova,2002).}

Beroe ovata

جاداری هرامافودیت است و سلول های جنسی تر و ماده در یک یک بازدار دیده می‌شود. مطالعات انجام شده در برای سیاه نشان می‌دهد زمانی که طول این یک یک بازدار به 2000 تخم در روز آزاد می‌کند (Arashkevich et al.,2001)

فصل دوم
روش تحقيق و مواد
فصل دوم: روش تحقيق و مواد

1-2- تاريخه

صد كيلوما ماهيان في سواحل إيران براوي نولين بار في سال 1350 أغاث شهد. ميزان صيد ماهيان كيلوما نا سال 1378 روند أفراشيم داشت. به طوره ميزان صيد دير اين سال به 95 هزار تن رسيد. اما در سال 1379 ميزان صيد به 78 هزار تن و در سال 80 به ميز ا ي هزار تن كاهش یافت (سانتانه امارات شيلات إيران، 1380).

هم زمان با اين كاهش صيد محققين ايراني و روسي (2000)، اسماعيلى و همكاران، Ivanov، et al.

را در دريابی خزر شناسایي كردنده كه Mnemiopsis leidyi 1378 کونه اي از شناش دارا با نام علمي به علت این کرونا که پوسته دې دې واژه مهاجم از طريق دريابي مياه و احتمالا از طريق آب توانست كشي ها. وارد دريابي خزر شده است. طي سال های بعد جمعيت كاهش جاندار به سرعت افزایش (نشنال دايد ست، 2002 ا)a.

تحقيقات انجام شده در دريابي مياه پس از تهاجم M. leidyi به اين دريا. رابطه آماري مستجيب ميان

حضور اين جاندار و كاهش صيد ماهيان انجري و شاه ماهيان را نشنال ستاد (GESAMP، 1997، 1). با توجه به اين شواهد و از انجري كه زنوبلانکتون ها و بالاех صورت كه بوده اين عمد غذای نشستک ميان است. اين تحقیق به این شواهر یابی میان M. leidyi كيلوما ماهيان و اين گونه از دیدن انجام بدينفت.

2-2- نموه برداري

1-2- ناحیه مورد مطالعه

مطالعات نشان داده اند ميزان زی توده در استان مازندران در نواحي نبردیک به بندار پابلسر و M. leidyi نشون نسبت ساير نواحي بيشترین مقدار است (اسماعيلى، 1380، 1). نمونه برداري از در در M. leidyi نمایه عمود بر سواحل ايراني خزر جنوبی صورت گرفته است. استخراج اول موالي شهرستان هاي نروش E 230 و7/62/38 و7/68 پوده و استخراج دوم موازي مركزو مرکز بنادر شيلاسي شهرستان نورشهر (E 51/05 18)
و(37°29' و 36°39') می‌باشد. نمونه‌برداری در هر ایستگاه در میان عمق ۰.۵ و ۱۵ متری موازی ساحل صورت گرفته است. شکل‌نامه‌ها ۱ و ۲ ایستگاه‌های نمونه‌برداری زنجان می‌دهد.

نمونه‌های ماهی کیلکای از ماهیان کیلکایان آنچه تازه‌سی شده در بندر صبایی ابرسیمی پاشنه‌ند. صید در عمق بیش از ۲۵ متر صید انجام می‌شود.

شکل ۱- ۱- ایستگاه‌های نمونه‌برداری: بابسیز، نوشترو.

۲- ۲- گونه‌های نمونه‌برداری شده

ماهی کیلکایی که در این تحقیقات مورد بررسی قرار گرفته است از گونه‌ها ماهی کیلکای آنچه و Clupeonella engraliformis می‌باشند. ماهیانی به طول متوسط برای نمونه‌برداری انتحاب شده‌اند و از ماهیان کوچکتر از ۷۰ میلی‌متر می‌توان در این تحقیق صرف نظر نشده است.

گونه شناخته‌دار نمونه‌برداری شده نیز در طبق شواهد موجود گونه Mnemopsis leidyi می‌باشد.

۳- ۲- زمان نمونه‌برداری

نمونه‌برداری طی ماه‌های مه، مرداد، شهریور، آبان، آذر، دی، بهمن سال ۱۳۸۰ و فوروردین، اردیبهشت، خرداد، مهر و ماه سال ۱۳۸۱ انجام شده است. در ۳۰ ماه سال ۱۳۸۰ به عنوان روزانه بودن دریا
مکان نمونه برداری از شانه در ورود نشانه در اردیبهشت سال ۱۳۸۱ نیز صید کنکا ماهیان به دلیل زمان نرم برای این ماهیان انجام نشده بود و بنابراین نمونه ماهی در این ماه تهیه نگرده است.

Mnemiopsis leidyi ۴-۲-۲ - روش نمونه برداری

نمونه برداری از *Mnemiopsis leidyi* از فاصله موتوری با سرعت بسیار انداز کشیده می‌شود. انجمام‌های گرفت سپس در سه‌جا وارد گرفت و تحصیل شدن آن در ضرر خالی می‌گردد. سپس محصولات ضرر به ضرر دریاگیری که شماره استگنا بر روی آن نوشته شده بود منتقل می‌شود.

پس از انعقاد به ساحل، هر نمونه به صورت محیا در ضرر کوچکی قرار می‌گرفت و کلیه مشخصات چندین شماره برادری و عمق نمونه برداری بر روی آن بنامش می‌شد.

همگان در بند صنایع بیلبور از کلیکی ناری صید شده توسط شناور هرای صنایع، تعداد ۱۰۰ عدد کلیکا به صورت راندم و تصادفی انتخاب می‌شد.

۳-۲-۲ - ثبت نمونه

Mnemiopsis leidyi ۴-۲-۱ - ثبت نمونه های

پس از گذشت کمتر از ۱۰ ساعت، مناسب با دمای محیط، به سرعت در نوب متلاشی می‌شود. با افزایش دمای محیط و افزایش نکات هوا ورود به ضرر محیطی شانه دارد. بسنده آنها سرعت تر متلاشی می‌گردد.

به مطور تثبیت نمونه های شانه داران به نهایت نیک ویکس، معرفی شده است (۱ اسماعیلی و همکاران، ۱۳۸۰). در اینجا به اندازه تهیه محلول های معرفی شده بروز ویکس نمودن شانه داران در این تحت‌الاحاله می‌باشد، بهتر از آنها ممکن است برخی از موجودات بسیار بزرگ و حیوانات بالاکشوندی به هنگام نمونه برداری به روز بدن شانه دار چسبیده و به هنگام متلاشی شاند بندهان شانه دارد، به ویژه این موجودات زیر تثبیت شده و ایجاد خطأ نباید این روش نیز بکار گرفته شده است.
در يكسرى أسرى من جذور شعبة دار در محلول هاي الكل مثليك 70% ، 65% ، 60% ، 50% و 45% قرار
كرفت. در كل ميظعة محلول ها به غير ان اثنانول 92% دند شانه دار متلاشيي مي كرديد و همان خطا را ايجاد
هي نموذج. اما، چنانچه در الكل 96% قرار كرفت و سپس ضرف را به مدت جند ثانيه به شدت
تكان داد. دهيدراتبور سریع پافت هاي 87 دن سبي مي شود شانه دار را بتوان برای مدت طولانی نگهداري
كرد. لذا در اين تحقيق برای تنيب كردن بدن M. leidyi
إز محلول اثنانول 96% استفاده شده است.

2-3- تنيب نمونه هاي ماهي

بس از اندازه گيري سایز ماهيياه به کمک خط خش مدرج، دستگاه گوارش ماهييي با طول پيچ
از حلق تا مخرج جد: گرديده و في فرمالديده 4% تنيب مي شده تا 2-70 mm

شکل 2- نمونه اي از دستگاه گوارش كيلكاي آنجوي

5- مطالعات آزمایشگاهی

در آزمایشگاه نمونه های دستگاه گوارش كيلكاي به مدت 3 ساعت در آب ماقت گرفته مي كردنند. سپس
هر نمونه در ظروف گرم و با كمک تیغ سکاليل از دهان تا مخرج كاملاً شکافته مي شد. پس از آن
حدود 500 آب ماقت به ظرف اضافه مي كرديد و بعد از کنست 15 دقیقه با کمک سنس آزمایشگاهي

71
محتويات دستكاه كوارش تخلية مي شد. سيسا اين محتويات با كمك بي بي بس باستور برو روى لام هاى مدرج گستره مي گرديد. بس از گستره نمونه بروي روى لام. منظور جذورگيري ز خشك شدن نمونه (Steelman, 1976) در معرض هواء. مخلوط كليسيبرين - الكلى به نسبت 1 - 6 بر روى لام اضافه مي شد.

M. leutyi در مورد نمونه هایان ابتدا نمونه هيابي كه در اندازه مورد شنتان به مدت 4 - 1 ساعت در آب قرار مي گيرند مسپ بر روي لام هاي مدرج گستره شده و فست قرار كوبته ها به كمک اسکالي.

جد، مي گرديد و بر روى آن مخلوط كليسيبرين - الكلى به نسبت 1 - 6 اضافه مي شد.

نمونه هيابي كه در مسلماند قرار داشته و نير ابتدا درون ظرف پنجره قرار مي گيرند. بس از كشند 5 - 4 ساعت كه حجم محتويات مابع كاهش مي یافتد. با اعتماد به كمک بي بي بس باستور بر روی لام مدرج قرار مي گرفت و بر روی آن مخلوط كليسيبرين - الكلى به نسبت 1 - 6 اضافه مي شد.

5 - 2 جمع آوري داده ها

كلیه لام هایی تهیه شده توسط میکروسکوپ فلورسانت نیکون 100 منتصب به كامپيوتر و نبر رامک.

میکروسکوپ نیکون مورد بررسی قرار گرفت. در پاره ای از موارد به جای استفاده از نور مستقيم میکروسکوپ با سایر به روي نمونه ها نور در امپ هالوز گرفته و تزریق مطالبه تابانیده مي شد كه در نتیجه

امكان مطالعه بهتر شدن. تصاویر میکروسکوپی موجود در Mnemiopsis leutyi از نوع مطالعه بهتر شدن. تصاویر میکروسکوپی موجود در Mnemiopsis leutyi

شکل 2 - فصل 3 تفاوت ميان استفاده از اين دو نوع نور را به خوبی نشان مي دهد.

تعداد موارد غذائي موجود در هر نمونه لام پي از شناسایي با كمک كيفان كي شناسايي كونه ها (Miner, 1950 ; اسماعيلي , 1380) به همراه ابعاد آنها ياداشت کرد. به اين منظور تعداد مواد غذائي موجود در دستگاه کوارش هر نمونه از ماهي انجوجو در ماه اول نمونه بردندي و همچنين تعداد كوبه

M. leutyi بهره ای مصرفی توسط كيکاک و شانه دار با علاوه تعداد نغم ماهي موجود در دستگاه ياديش (Jentjesch و Jentjesch که جتع زن و بود علامت (O) و جتع زن پي بود عملايت (X) برای نمي از بدن مشخص بود علامت (O) و جتع زن پي بود عملايت (X) در نظر گرفته شد. سپس كليه اين علامت با يكديگر جمع شد و به صورت عددي به عنوان تعداد ماده غذايي مصرفی در نظر گرفته شد.
٦-٢-١ - محاسبة عدد موانع غذائي مصرفى

شахص هاي تغذيه ای متعددی برای تجزیه و تحليل میزان درصد محتویات گواشی جانوران موجود در استفاده قدیمی (Chipps, 2001) بر خلاف این نمایه ها بر حسب وزن ماده غذایی مصری (W) موجود در دستگاه گوارش جانور و برخی دیگر بر اساس تعداد (N) یا حجم محتویات (V) موجود می‌باشند.

در این تحقیق از شاخص N استفاده گردیده است (فرمول ١) که نشانگر درصد محتویات موجود در استفاده غذایی و بر حسب تعداد می‌باشد.

\[N = \frac{N_0}{\sum N_i} \] (فرمول ١)

که در این فرمول:

- \(N_0 \) تعداد غذاي یک

- \(Q \) تعداد نوع غذا است

برای این اساس پس از شمارش هر ماده غذایی موجود در سیستم گوارش اعداد حاصله در فرمول ١-٢ فرآور درصد تعداد موانع غذایی به تفکیک برای هر نوع غذا و برای هر نمونه از شناسه در و با ماهی محاسبه گردیده پس از آن میانگین درصد موانع غذا برای هر نوع غذا به صورت ماهیانه با استفاده از Staticgraph Plus نسخه ٢.١ نرم افزار آماری محاسبه شد.

٦-٢ - محاسبه میزان همبشواني تغذیه اي

همبشواني تغذیه‌ای یکی از نشانه‌های وقایع می‌باشد. لذا برای تحقق بر روی رابطه متقابل روابطی بین دو گونه کیکلا ماهیان و M. leidyi لازم بود میزان همبشواني تغذیه‌ای بین آنها مشخص و از نظر بیولوژیکی معنی‌گردد. نمایه‌های مختلف برای کمی گردان میزان همبشواني تغذیه‌ای بین‌پنجه‌هاد شده است.

ازماني كه تعداد شکار و شکارچي در دسترس باشد نمایه موریستا (Morró's index) پیشنهاد می‌شود برای محاسبه این شاخص فرمول ٢-٢ به کار می‌رود:

\[\text{Morró's index} = \frac{\text{تعداد میزان‌های گونه‌ها}}{\text{تعداد کل میزان‌های گونه‌ها}} \]
\[M = \frac{2\sum P_x P_u}{\sum P_u \left(\frac{n_x - 1}{N_x - 1} \right)} + \sum P_u \left[\frac{n_x - 1}{N_x - 1} \right] \] (فرمول \(\text{-} 2 \))

اگر داده‌هایی در دسترس از میزان شکار موجود در سیستم گوارش گونه‌های مورد مطالعه بر حسب بیو ماس و یا حجم باشد از نمایه هورن استفاده می‌شود. Horn's index

برای محاسبه این نمایه فرمول \(\text{-} 3 \) استفاده می‌شود (Chipps، 2002).

\[H = \frac{\sum (P_y + P_x) \log(P_y + P_x) - \sum P_y \log P_y - \sum P_x \log P_x}{2 \log 2} \] (فرمول \(\text{-} 3 \))

اگر درصد عددی و یا حجمی و یا وزنی گونه‌شکار موجود در سیستم گوارش شکارچی در دسترس PSI (Percent Similarity Index) معروف به شاخص درصد مشابه Schoener باشد از نمایه استفاده می‌شود.

روش محاسبه شاخص همبستگی به شرح زیر می‌باشد:

\[PSI_{xy} = 1 - 0.5 \left(\sum_{i=1}^{n} \left| P_{xi} - P_{yi} \right| \right) \] (فرمول \(\text{-} 4 \))

که در اینجا:

\[Schoener_{\text{شاخص}} - PSI_{xy} \]

درصد علائم آم در محورهای معده گونه \(x \) دارد \(P_{xi} \)

درصد علائم آم در محورهای معده گونه \(y \) دارد \(P_{yi} \)

تعداد طبقات عدد \(n \)
می‌باشد. این نمایه زمانی از نظر بیولوژیکی معنادار است که مقدار آن بیش از 0/5 باشد. در این اساس وقتی هیچگونه تغذیه‌ای می‌باید گونه‌های مورد مطالعه وجود نداشته باشد مقدار این شاخص صفر و زمانی که بین‌شیرین شما‌ست تغذیه‌ای وجود دارد مقدار آن 1 می‌باشد.

(Wallece, 1981; Saenz, 1996; Karchesky & Bennett, 1997; Chouinrad & Bernatchez, 1998).

با توجه به اینکه بر اساس داده‌های حاضر از نتایج آزمایش‌گاهی درصد دودی شکار مورد استفاده در با استفاده از Schoener گونه M. leidyi که یک گونه آنژی در دست بود، در این تحقیق نمایه همبوسانی فرمول 4- محاسبه گردید. برای انجام مطالعات آماری بر روی داده‌های به دست آمده از نسبت 0/2 نرم افزار آماری استفاده شده است. Microsoft Excel و برای ترسیم نمودار ها از نرم افزار 1998 Staticgraph Plus.
فصل سوم
نتائج مطالعات و تجزيه و تحليل داده ها
فصل سوم: نتایج مطالعات و تجزیه و تحلیل داده‌ها

١- مشاهدات مستقیم

به هنگام نمونه برداری از شانه داران در فصل زمستان در هر دو ایستگاه و در اعماق مختلف نمونه برداری اندوزه آن‌ها بسیار کوچک بود (میانگین کمتر از 20 mm) و به ندرت شانه‌های دری در طول بیش از 20 mm در تور مشاهده می‌شد. اما در همان زمان، طی نمونه‌برداری اتفاقی درللاب بین المللی میانکاله شانه‌هایی با طول بیش از 20 mm در تور دیده می‌شدند. این امر می‌تواند اول‌اً درنتیجه مهاباب غذا در تللاب میانکاله و خلیج گرگان نسبت به دریای خزر و ثانیاً در ارتباط با افزایش دمای آب خلیج نسبت به سایر مناطق آب دریا باشد.

همچنین طی یک موردلی نمونه برداری اتفاقی در اواخر مهر ماه سال ١٣٨١ در تللاب میانکاله گروه هایی از شانه دار با طول بیش از 50 mm مشاهده شد. در همان زمان، بیشترین میزان مشاهده شده شانه دار در ایستگاه های نمونه برداری پاپگان و نور سه ٤٠ mm بوده است.

٢- مطالعه میکروسکوپی سیستم گوارش و بدن M. leidy

به منظور بررسی سیستم گوارش Mundiopsis leidy در تهران متصل شدند. این نمونه‌ها در ظروف بسته و با روی لام فرار گرفته و توسط استریو میکروسکوب (لوب) و همچنین میکروسکوب فلورسنس به ١٠٠ مضیقه به کامپیوتر مورد بررسی واقع شدند.

مطالعه میکروسکوپی (١٠٠ ×) نشان داد که همانند زل ماهیان این شانه داران نیز دارای حفره‌های هضمی داخلی هستند (تصویر ١-٢). همچنین تحت تأثیر مواد منشأ رشد قرار می‌گیرند و سپس وارد سیستم کاتالیف پیچیده ای شده و در حفره‌های هضمی می‌جرخد. مواد غیر قابل هضم از طریق دو کانال به خارج از بدنش منتقل می‌گردد. این کانال‌ها به روزن‌های کوچکی روی محفظ بدنش ختم می‌شوند.
تصویر ۱- حفره گوارشی در Mnemiopsis leidyی (۲۰۰۰)

این خانه جهت ورود و خروج مواد را نشان می‌دهد.

برای بررسی بهتر مسیر گوارش به‌سیاس می‌توانید از پرمنکاتین پیامب در پایان دهانی قرار داده شده‌باشد. این مطالعه به‌عنوان سه‌گانه وارونگانی در پرمنکاتین پیامب روده‌ای دارای حفره گوارشی‌های کاربردی است. به‌همین‌روانی که پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح پرمنکاتین کلیه سطح بدن جاندار را نیروشانده‌هایی پرمنکاتین کلیه سطح П.
در برخی از نمونه‌های مورد مطالعه، شیب دار مواد نیم هضم شده‌ای را از دهان بررسی گردیده که در سیستمی کلاف مانند از مورس پیچیده شده بودند. تصویر ۳ نشان دهنده این مواد است که از طریق تابش مجدد نور منتفیت تهیه شده اند.

(۱۰۰×)

M. leidyi

 Nah (۳۰×)

 می‌توانم مطالعه میکروسکوپی بدن شیب دار با رنگ‌های همان‌پس‌سیاه، انزیم، کیمیا و آکریل اورنج رنگ آمیزی شد. به‌طوری‌که تصاویر دیگر نشان دهنده اورنج بوده. مشاهده‌های مختلف و دارای هشت رنگ‌های مختلف صفحه شیب‌های می‌باشد که از می‌توانست انتهای بدن (لب مقابل دهانی) مشاهده گریت و نواحی دهانی امتداد یافته اند. از این هشت رنگ‌های شیب این چهار رنگ بلندتر بوده و دارای حدود کمیت دندانه برگ و تعدادی دندانه کوچک هستند. دندانه های کوچکتر در کناره لب دهانی و دندانه های بزرگتر در فسیت مقابل دهانی قرار دارند.

(۱۰۰×)

M. leidy

 Nah (۳۰×)

چهار رنگ شیب‌های دیگر کوتاهتر بوده و دارای ۲۰-۳۰ دندانه می‌باشد (تصویر ۴).

79
مطالعه میکروسکوپی با فیلتر UV نشان داد هر دندانه دارای یک زانده مزرعه مانندی است و از رضافته انرژی آن نوری مربوط آن تا آزمایش ساخته شده (تصویر - 5). زانده شانه ها تقریباً در پربرود زمان مشخصی بین 30 تا 40 ثانیه انجام و سپس به مدت کمتر از 10 ثانیه متوقف می شود.

تصویر - 5 - a) ردیف شانه ای (b) دندانه روی شانه ها - c) مزرعه روی دندانه

در بررسی های انجام شده در نرم‌کنی شانه ها و کنال های زیر آن ها دانه های بسیار بزرگ دیده شد (تصویر - 6). که ماهیت آن ها مشخص نمی‌باشد. تصاویر به دکتر احمد کیبکش محقق استندیژ علوم دریایی و دانشگاه می‌تواند است که تحقیق نشان داده شد. همچنین این تصاویر برای دکتر آنتونی موس محقق بیولوژیست در دانشگاه آبیورن ایالت آلاباما آمریکا ارسال شد که بر اساس تئوری‌ات این دانه ها ممکن است نوعی تگل و یالاژ سایتهای M. leidyi باشد.

2 Anthony Moss
Associate Professor
Biological Sciences
Auburn University
131 Cary Hall
Auburn, AL 36849

80
تصویر ۷-۶- ذرات بسیار زیبایی بین کانال‌ها و تندیکی شانه‌ها که احتمالاً لاورو (Cydippid larvae) در ادامه بررسی مواد غذایی در حفره‌های هضمی بدن شانه دار جانورانی در مسیر کانال‌ها مشاهده گردید. که شکل میکروسکوپی از آن‌ها در تصویر ۷-۶- دیده می‌شود.

تصویر ۷-۷- جانوران موجود در کانال‌های زیر شانه‌ها با دایره مشخص شده اند.
بررسی میکروسکوپی محیط‌های حفره‌های هضمی در نشان دهنده وجود خلکی‌ها، کوبه بوده و تخم ولارو ماهیان در رژیم تغذیه این جاندار بود. تعداد معدود های بر نسبتاً زياد بود و در فصول سرد سالانه کوبه به بودهای مصری کوچکتر از ۷/۰ میلی متر بود. (تصویر ۷-۸-)

\(\text{تصویر ۸-۸- مواد غذایی مصری متوفک} \)

\(\text{تصویر ۸-۸- مواد غذایی مصری توسط b) کوبه بود.} \)

\(\text{تصویر ۸: M. leidyi}\)
3- مطالعه میکروسکوپی محتویات گوارشی کیلکا

بررسی میکروسکوپی دستگاه گوارش ماهی انگوری نشان می داد که ترکیبات مختلف موجود در دستگاه گوارش را در قرارن در چهار گروه عمده شامل زئو پلاکنکتون ها، و گنتو پلاکنکتون ها دیده و سایر همسرتش دیده نشده و غیر قابل تشخیص تقسیم بندی کرد. زئو پلاکنکتون ها خود شامل گونه هایی از گونه شامل گونه هایی آبی از سخت پوستان برز (کویه بود ها) و صبیفی ها و پرتابوندها بودند. در اواخر بهار و اولین نیمه تابستان دستگاه گوارش ماهیان نسبتا پرتر بود. همچنین ماهیان با سایر دریافت نمایی‌هایی از گونه هایی از محتویات غذایی موجود در دستگاه گوارش ماهیان انگوری در تصاویر 9 و 10 دیده شدند.

تصویر 9- نمونه ای از کویه پوشه‌ای موجود در دستگاه گوارش کیلکای انگوری

تصویر 10- نمونه ای از پرتابوندیهای موجود در دستگاه گوارش کیلکای انگوری

تصویر 11- نمونه ای از صبیفای موجود در دستگاه گوارش کیلکای انگوری

82
پرسی و تجزیه و تحلیل مواد غذایی مصری توسط M. leidy

نیاز دارد که ترکیبات مختلف موجود را در این M. leidy غرد و ضرب شوند و مردم نباید تهدید شده و توجه قابل تشخیص نشود.

جدول 1- نماد نشان دهنده درصد عددی (N %) کوکه گرم و تعداد ماهی در محیط‌های گروهی در M. leidy در ابعاد 5 متر در استگاه نوشتر می‌باشد.

<table>
<thead>
<tr>
<th>عمق (متر)</th>
<th>درصد عددی کوکه گرم</th>
<th>تعداد نمونه برداری</th>
<th>زمان نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0/8</td>
<td>6/7</td>
<td>مردان</td>
</tr>
<tr>
<td></td>
<td>0/7</td>
<td>6/3</td>
<td>شهریور</td>
</tr>
<tr>
<td></td>
<td>0/8</td>
<td>5/3</td>
<td>ابان</td>
</tr>
<tr>
<td></td>
<td>0/1</td>
<td>5/7</td>
<td>آذر</td>
</tr>
<tr>
<td></td>
<td>0/1</td>
<td>5/3</td>
<td>بهمن/اسفند</td>
</tr>
<tr>
<td></td>
<td>0/9</td>
<td>5/9</td>
<td>فروردین/اردیبهشت</td>
</tr>
<tr>
<td></td>
<td>0/2</td>
<td>5/7</td>
<td>خرداد/های{}</td>
</tr>
<tr>
<td></td>
<td>0/9</td>
<td>5/6</td>
<td>مرداد/سپتامبر</td>
</tr>
<tr>
<td></td>
<td>0/1</td>
<td>6/1</td>
<td>شهریور/مهر</td>
</tr>
<tr>
<td></td>
<td>0/1</td>
<td>6/8</td>
<td>مهر/آذر</td>
</tr>
</tbody>
</table>

جدول 1- درصد محیط‌ها در استگاه نوشتر در عمق 5 متر M. leidy.
<table>
<thead>
<tr>
<th>درصد عددی تخم‌های کوچه پود درصد عددی نمونه</th>
<th>تعداد نمونه</th>
<th>زمان نمونه‌برداری</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>61/9</td>
<td>98</td>
<td>مرداد 80</td>
</tr>
<tr>
<td>1/2</td>
<td>6/2/5</td>
<td>93</td>
<td>شهریور 80</td>
</tr>
<tr>
<td>3/1</td>
<td>00/8</td>
<td>82</td>
<td>آبان 80</td>
</tr>
<tr>
<td>3/3</td>
<td>94/8</td>
<td>99</td>
<td>آذر 80/90</td>
</tr>
<tr>
<td>6/2</td>
<td>01/3</td>
<td>98</td>
<td>بهمن 80/90</td>
</tr>
<tr>
<td>1/1</td>
<td>57/6</td>
<td>96</td>
<td>فروردی 81/90</td>
</tr>
<tr>
<td>7/2</td>
<td>67/8</td>
<td>95</td>
<td>اردیبهشت 81</td>
</tr>
<tr>
<td>7/7</td>
<td>73/1</td>
<td>94</td>
<td>خرداد 81</td>
</tr>
<tr>
<td>1/2</td>
<td>26/2</td>
<td>89</td>
<td>مرداد 81</td>
</tr>
<tr>
<td>1/3</td>
<td>6/2/8</td>
<td>96</td>
<td>شهریور 81</td>
</tr>
<tr>
<td>0/4</td>
<td>05/2</td>
<td>93</td>
<td>مهر 81</td>
</tr>
</tbody>
</table>

جدول ۲ - درصد محتویات معدن در استخراج نوشته در عمق 10 متر M. leidyi

84
جدول ۳- درصد محتویات معدنی M.leidyi در ایستگاه نوشهر در عمق ۱۵ متر

<table>
<thead>
<tr>
<th>عمق</th>
<th>تعداد نمونه</th>
<th>زمان نمونه برداری</th>
<th>نکته ماهی</th>
<th>کوبه پودر</th>
<th>درصد عددي</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ متر</td>
<td>۹۷</td>
<td>مهر</td>
<td>۱/۸</td>
<td>۶۳/۸</td>
<td>۱/۸</td>
</tr>
<tr>
<td>۱۲ متر</td>
<td>۹۸</td>
<td>شهریور</td>
<td>۲/۱۸</td>
<td>۶۴</td>
<td>۲/۱۸</td>
</tr>
<tr>
<td>۱۰ متر</td>
<td>۹۶</td>
<td>مرداد</td>
<td>۴/۱۴</td>
<td>۷۶/۸</td>
<td>۴/۱۴</td>
</tr>
<tr>
<td>۸ متر</td>
<td>۹۴</td>
<td>شهریور</td>
<td>۱/۶</td>
<td>۵۹/۸</td>
<td>۱/۶</td>
</tr>
<tr>
<td>۶ متر</td>
<td>۹۷</td>
<td>مهر</td>
<td>۱/۵</td>
<td>۵۳/۷</td>
<td>۱/۵</td>
</tr>
</tbody>
</table>

در ایستگاه نوشهر در عمق ۱۵ متر
نمودار های ۱ تا ۴ نشان دهنده میزان درصد کویه پود و تحتمالی در رزیم تغذیه در M. leidy در استادی نوشهر می‌باشد.

همچنین که جداول و نمودار ها نشان می‌دهند میزان درصد کویه پود توسط در M. leidy فصل نابیضان بیشتر از فصل نابینابیشان است که این امر می‌تواند ناشی از شکوفایی این سبکهای این سخت بوسناز ریز در ماه‌های کرم سال باشد. علاوه بر آن درصد کویه پود موجود در سیستم گوارش نمونه‌ها در عمق ۱۵ متر بیشتر از اعماق دیگر می‌باشد.

همچنین درصد عدیدی تخم ماهی مصرف در اعماق مختلف در اواخر بهار و اوایل پاییز نسبت به سایر فصول بیشتر می‌باشد. این ماه‌ها مقارن با پیک تخم‌ریزی بیشتر پیاز ماهیان در ریز خزر می‌باشد.

مطالعات آزمایش‌هایی که نشان داده است که قطر این تخم‌ها حدود ۱ و ۲ مایکرون می‌باشد.

محاسبات آماری از طریق آزمون تحلیل برآوردگر واریانس (ANOVA) نشان می‌دهد که بین میانگین های سه عمق نمونه در استادی نوشهر (۱۵، ۱۰ و ۱۵ متر) در سطح اطمینان (۹۵٪) اختلاف آماری معنی‌داری وجود ندارد (۴۳۴۹۳۹۶). نتایج حاصله از آنالیز توسط نرم‌افزار Statgraphics آمده است.

در این آنالیز: ۳ col = عمق (m) ۱۰ و ۵ col = عمق (m) ۱۵ می‌باشد. همچنین با استفاده از این آزمون مشخص می‌شود که در سطح اطمینان (۹۵٪) بین میانگین های هر دو عمقی که با یکدیگر مقایسه شده‌اند نیز اختلاف معنی‌دار دار آماری وجود ندارد.

یک نتیجه از آن جا ناشی می‌شود که در استادی نوشهر، با توجه به نویک‌گرایی منطقه، این (شکل - ۱) فصل دوم فاصله طولی این اعماق بسیار انداز است و با توجه به اینکه مهاجرت عمودی M. leidy جابجایی مکانی ذری، این نتیجه دور از اندازه نمی‌باشد.
بررسی کیفیت نمونه‌های محتویات مواد غذایی مصرفی توسط M. leidyi در استگاه پاپلسر نیز مشابه مورد استفاده نمونه برداری نوشته می‌باشد. بر اساس همان طبقه بندی درصد عددهای (N %) کوه پوست در زمان های مختلف و در اعماق ۵ متر در M. leidyi و نمای ماهی در محتویات دستگاه گوارشی استگاه پاپلسر محاسبه گردید. نتیجه حاصل از این محاسبات در جدول ۲ - نشان داده شده و داده های مربوط به این استگاه به صورت نمودار های ۸ - ۵ دیده می شوند.

<table>
<thead>
<tr>
<th>درصد عددهای نمای ماهی</th>
<th>درصد عددهای کوه پوست</th>
<th>تعداد نمونه برداری</th>
<th>زمان نمونه برداری</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۹</td>
<td>۰/۰۷</td>
<td>۹۶</td>
<td>مرداد ۹۰</td>
<td>۵ متر</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۵۰</td>
<td>۹۹</td>
<td>شهریور ۸۰</td>
<td></td>
</tr>
<tr>
<td>۰/۴</td>
<td>۰/۵۰</td>
<td>۹۵</td>
<td>آبان ۸۰</td>
<td></td>
</tr>
<tr>
<td>۰/۴</td>
<td>۰/۵۰</td>
<td>۹۴</td>
<td>آذر ۸۰</td>
<td></td>
</tr>
<tr>
<td>۰/۲</td>
<td>۰/۵۰</td>
<td>۱۰۰</td>
<td>بهمن/۱۰/۸۰</td>
<td></td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۵۰</td>
<td>۸۷</td>
<td>فروردین ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۵۰</td>
<td>۹۵</td>
<td>اردیبهشت ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۵۰</td>
<td>۹۹</td>
<td>خرداد ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۵۰</td>
<td>۹۸</td>
<td>مرداد ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۰/۵۰</td>
<td>۹۸</td>
<td>شهریور ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۱</td>
<td>۰/۵۰</td>
<td>۹۶</td>
<td>مهر/۸۱</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲ - درصد محتویات معدنی M. leidyi در استگاه پاپلسر در عمق ۵ متر.
جدول ۵-۱ درصد محیط‌های معدنی M. leidyi در استفاده با بال‌سر در عمق ۱۰ متر

<table>
<thead>
<tr>
<th>درصد عددي</th>
<th>درصد عددي</th>
<th>تعداد نمونه</th>
<th>زمان نمونه برداري</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>نختم ماهي</td>
<td>كوه پیو</td>
<td>۹۳</td>
<td>مرداد ۸۰</td>
<td></td>
</tr>
<tr>
<td>۱/۲</td>
<td></td>
<td>۵۴/۴۰</td>
<td>شهريور ۸۰</td>
<td></td>
</tr>
<tr>
<td>۱/۰۰</td>
<td></td>
<td>۵۱/۹۰</td>
<td>آبان ۸۰</td>
<td></td>
</tr>
<tr>
<td>۳/۶</td>
<td></td>
<td>۴۹/۷۰</td>
<td>آذر ۸۰</td>
<td></td>
</tr>
<tr>
<td>۱/۹</td>
<td></td>
<td>۴۷/۸۰</td>
<td>بهمن/ ۸۰</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۴۳/۷۰</td>
<td>فروردین/ ۸۱</td>
<td></td>
</tr>
<tr>
<td>۱/۶</td>
<td></td>
<td>۴۰/۱۰</td>
<td>اردیبهشت/ ۸۱</td>
<td></td>
</tr>
<tr>
<td>۳/۴</td>
<td></td>
<td>۴۸/۱۰۰</td>
<td>خرداد/ ۸۱</td>
<td></td>
</tr>
<tr>
<td>۲/۹</td>
<td></td>
<td>۵۲/۷۰</td>
<td>مرداد/ ۸۱</td>
<td></td>
</tr>
<tr>
<td>۱/۶</td>
<td></td>
<td>۵۲/۲۰</td>
<td>شهریور/ ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۶</td>
<td></td>
<td>۵۱/۵۰</td>
<td>مهر/ ۸۱</td>
<td></td>
</tr>
<tr>
<td>۰/۴</td>
<td></td>
<td>۵۰/۷۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد عددي تخم ماهي</td>
<td>درصد عددي کوبه پرود</td>
<td>تعداد نمونه</td>
<td>زمان نمونه برداري</td>
<td>عمق</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>1/1</td>
<td>58/5</td>
<td>98</td>
<td>مارداد 80</td>
<td></td>
</tr>
<tr>
<td>1/7</td>
<td>56</td>
<td>96</td>
<td>شهریور 80</td>
<td></td>
</tr>
<tr>
<td>3/1</td>
<td>52/8</td>
<td>99</td>
<td>آبان 80</td>
<td></td>
</tr>
<tr>
<td>3/3</td>
<td>51/3</td>
<td>97</td>
<td>آذر 80</td>
<td></td>
</tr>
<tr>
<td>5/7</td>
<td>48</td>
<td>98</td>
<td>بهمن/80</td>
<td></td>
</tr>
<tr>
<td>5/9</td>
<td>43/2</td>
<td>93</td>
<td>فروردین/81</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td>49/8</td>
<td>97</td>
<td>آذری/81</td>
<td></td>
</tr>
<tr>
<td>2/0</td>
<td>67/0</td>
<td>98</td>
<td>خرداد/81</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>65/30</td>
<td>98</td>
<td>مارداد/81</td>
<td></td>
</tr>
<tr>
<td>1/0</td>
<td>63</td>
<td>95</td>
<td>شهریور/81</td>
<td></td>
</tr>
<tr>
<td>9/3</td>
<td>54/8</td>
<td>99</td>
<td>مهر/81</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶-۳ درصد محصولات معدود M.leidyi در استان گلستان بایان می‌شود در عمق ۱۵ متر.
همچنان که جداول و نمودارها نشان می‌دهند، میزان درصد مصرف کوته پود توسط
در M. leidyi با افزایش برخورداری از فصل زمستان افزایش می‌یابد. این امر می‌تواند
شکوفایی این سخت بودن ریز در ماه‌های گرم سالم باشد.

محاسبات آماری از طریق آزمون تحلیل برآوردی و اریبی (ANOVA) نشان می‌دهد که بین میانگین
های سه عمق نمونه پرداری در ایستگاه بالاسرا (10 و 15 متر) در سطح اطمینان 95% اختلاف آماری
معنی‌داری وجود ندارد (F = 23.05 فاصله این آزمون مشخص می‌شود که در سطح
اطمینان 95% بین میانگین‌های هر دو عمق که با یکدیگر مقایسه شده اند نیز اختلاف معنی‌دار آماری
وجود ندارد. نتایج حاصله از آنالیز آماری پیوست B آورده شده است.

94
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

%

N
مطالعات أزمابشگاهي انجام شده بر روی نمونه های محتوای دستگاه گوارش متاحم کیلکا‌های آنجوی (Clupeonella engraliiformis) نشان می دهد که ترکیبات مختلف موجود در دستگاه گوارش را می توان در جهار گروه عمده شامل زنوز ایتارکتیک ها، فیتو بلاتکتون ها، دئریت و مواد هضم شده و غیر فعال تشخیص تقسیم بندی کرد. زنوز ایتارکتیک ها و دئریت و مواد هضم شده هر دو دارای تعداد کمی بوده و تنها در نمونه های اول نمونه برداری تعداد کل مواد غذایی شمرده شده است.

سبس میزان کوبه بود مورد تغذیه ماهی آنجوی بر حسب درصد عددی (7%) محاسبه شده است. جدول ۸. میزان کوبه بود مورد تغذیه ماهی آنجوی را مشاهده می دهند. نمودار ۹-۹ نشان دهنده این میزان می باشد.

<table>
<thead>
<tr>
<th>درصد ماده غذایی</th>
<th>نوع ماده غذایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>زنوز ایتارکتیک</td>
<td>کوبه بود</td>
</tr>
<tr>
<td>30/20</td>
<td>ترمانود</td>
</tr>
<tr>
<td>47/1</td>
<td>رونیترا</td>
</tr>
<tr>
<td>0/20</td>
<td>فیتو بلاتکتون</td>
</tr>
<tr>
<td>1/0</td>
<td>دئریت و مواد سایر</td>
</tr>
<tr>
<td>10/25</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷-۷ محتوای موجود در دستگاه گوارش ۹۲ عدد کیلکا‌های آنجوی در میانه سال ۱۳۸۰
جدول: درصد عددی کوبه پودهای موجود در معده کیکلای انجوی

<table>
<thead>
<tr>
<th>ماه</th>
<th>تعداد نمونه‌ها</th>
<th>زمان نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰/۲</td>
<td>۹۲</td>
<td>مرداد ۸۰</td>
</tr>
<tr>
<td>۳۲</td>
<td>۸۸</td>
<td>شهریور ۸۰</td>
</tr>
<tr>
<td>۲۰/۵</td>
<td>۸۵</td>
<td>آبان ۸۰</td>
</tr>
<tr>
<td>۲۲</td>
<td>۸۳</td>
<td>اذر ۸۰</td>
</tr>
<tr>
<td>۱۷/۳</td>
<td>۸۴</td>
<td>دی/بهمن ۸۰۰</td>
</tr>
<tr>
<td>۱۸</td>
<td>۸۹</td>
<td>بهمن ۸۰۰</td>
</tr>
<tr>
<td>۲۲/۵</td>
<td>۸۱</td>
<td>فروردین ۸۱۱</td>
</tr>
<tr>
<td>۳۲/۷</td>
<td>۹۰</td>
<td>خرداد ۸۱۲</td>
</tr>
<tr>
<td>۳۶/۶</td>
<td>۹۰</td>
<td>مرداد ۸۱۲</td>
</tr>
<tr>
<td>۳۳/۲</td>
<td>۹۳</td>
<td>شهریور ۸۱۲</td>
</tr>
<tr>
<td>۲۴/۷۵</td>
<td>۹۰</td>
<td>مهر / مرداد ۸۱</td>
</tr>
</tbody>
</table>

با توجه به جدول و نمودارها در میانی‌ای که بیشترین میزان مصرف غذایی آن کوبه پوده‌ها در اواخر بهار و اوایل تابستان و کمترین میزان آن در فصل زمستان است که این نتیجه با تغییرات فصلی ترکم کوبه پوده‌ها در دریای خزر همخوانی دارد.
۶ - ۳ میزان همبستگی تغذیه ای میان M. leidyi و کلک‌ها. نگرشی از کارگری نمایی بالادار Schoener (فرمول ۴) میزان همبستگی تغذیه ای میان M. leidyi و کلک‌ها. آن در صورت بیان‌های بود مصرفی برای هر یک از نمونه‌ها محاسبه و نتیجه‌ای در جدول ۹-۹ نشان داده شده است.

تجزیه و تحلیل آماری از طریق آزمون تحلیل واریانس ANOVA (نشان می‌دهد که بین میانگین های میزان همبستگی تغذیه ای میان M. leidyی و کلک‌ها انجوی درسه عم دم نمونه برداری (۵۰۰۰ و ۱۵ متر) در هر یک از استگاه‌های نوشیرو و با مساحت اطمینان ۹۵٪ اختلاف آماری معنی‌داری وجود ندارد (t-پریستل ۲) و نسبت ۳-۲ برای هر یک از استگاه‌های نوشیرو لقب بان همراه با ترتیب (F = ۱.۶۵۳۹۴ و (F = ۰.۱۹۴۶۵) معنی‌داری و وجود نداشته باشد. همچنین با استفاده از این آزمون منحصر به فرد شده که در سطح اطمینان ۹۵٪ بین میانگین های دو عمده که با یکدیگر مقایسه شده اند نیز اختلاف معنی‌داری در آماری وجود ندارد خلاصه این تجزیه و تحلیل نیز آماری آمده است.
| تاریخ نمونه
بردایه | ایستگاه نوشهر | ایستگاه یابلسر |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>مرداد/80</td>
<td>86/70</td>
<td>86/70</td>
</tr>
<tr>
<td>شهریور/80</td>
<td>85/85</td>
<td>85/85</td>
</tr>
<tr>
<td>آبان/80</td>
<td>87/20</td>
<td>87/20</td>
</tr>
<tr>
<td>آذر/80</td>
<td>80/2</td>
<td>80/2</td>
</tr>
<tr>
<td>بهمن/80</td>
<td>83/85</td>
<td>83/85</td>
</tr>
<tr>
<td>فروردین/81</td>
<td>85/85</td>
<td>85/85</td>
</tr>
<tr>
<td>خرداد/81</td>
<td>80/37</td>
<td>80/37</td>
</tr>
<tr>
<td>مرداد/81</td>
<td>87/95</td>
<td>87/95</td>
</tr>
<tr>
<td>شهریور/81</td>
<td>87/1</td>
<td>87/1</td>
</tr>
<tr>
<td>مهر/81</td>
<td>83/88</td>
<td>83/88</td>
</tr>
</tbody>
</table>

جدول 9- میزان همبستگی تغذیه ای (PSI) میان M. leidyi و کنکای انگویی در دو ایستگاه یابلسر و نوشهر.
میانگین میزان همیوشانی در سه عمق متغیر در استنگاه‌های بابلسر و نوشه در سطح جدول ۱۰۰-

لست. همچنانه این داده‌ها نشان می‌دهد میزان همیوشانی تغذیه‌ای میان ماهی کیلکای آنجویی و
در استنگاه بابلسر بیشتر از استنگاه نوشه می‌باشد. به این امر ممکن است ناشی از تفاوتی که
میان زیستگاه تغذیه‌ای ماهی، ماهی کیلکای آنجویی در نوشه می‌باشد. به‌دنبال صیدی بابلسر باشد.
نمونه‌های ۱۶ و ۱۷ نشان دهنده میانگین میزان همیوشانی در هر یک از استنگاه‌های نمونه برداری می‌باشد.

همچنین، میانگین میزان همیوشانی طی دوره نمونه برداری در عمق ۱۵ متر در هر یک از استنگاه‌های
نوشه و بابلسر بیشترین مقدار است. این امر ناشی از این واقعیت است که بر اساس مطالعات انگشاد شده
در این عمق بابلسر از دو عمق M. leidy
تراکم ماهی کیلکای آنجویی و همچنین شانه‌دار CEP
محیط می‌باشد.

با این وجود تجزیه و تحلیل آماری نشان می‌دهد که در میانگین شاخص همیوشانی تغذیه‌ای
برای سه عمق نمونه برداری تفاوت معنی‌دار آماری مشاهده نمی‌شود (۰.۰۵ = F (پیوست C
(۰.۰۵ = F (پیوست C

جدول ۱۰۰- میانگین شاخص همیوشانی تغذیه‌ای PSI در استنگاه‌های نمونه برداری در اعماق مختلف

<table>
<thead>
<tr>
<th>عمق</th>
<th>نوشه</th>
<th>بابلسر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ متر</td>
<td>۸۰.۳۷</td>
<td>۸۸.۹۲</td>
</tr>
<tr>
<td>۱۰ متر</td>
<td>۸۷.۵۳</td>
<td>۸۷.۹۸</td>
</tr>
<tr>
<td>۵ متر</td>
<td>۸۴.۹۱</td>
<td>۸۷.۷۴</td>
</tr>
</tbody>
</table>
آلوگن بیولوجیکی توسط کوه‌های شیلاتی مهاجم اثرات نامطلوب را بر اکوسیستم پذیرفته است. این اثرات ممکن است زیست محیطی مانند تغییر در ترکیب جمعیتی کوه‌های بومی، تغییر ذخایر زنبیلکی و یا اجتماعی - اقتصادی از قبل ایجاد شد و در فعالیت‌های شیلاتی، آبزی پروری، تورپسم تأثیر می‌گیرد. ایجاد مانند این تغییرات در تغییرات آب و هوای استان ها و صنایع مستقر در ساحل به‌دشت همگانی و ... باشد.

(Muncheva & Kamburska , 2002)

<table>
<thead>
<tr>
<th>M. leidy</th>
<th>حضور در دریاچه خزر</th>
<th>نوع تأثیر</th>
<th>اثرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>تغییر در ترکیب کوه‌های جمعیت بومی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تغییر در فعالیت‌های جمعیت بومی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تغییرات نفس در شکه غذاام</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تغییر در زیر زیستی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>رفتاده تغییرهای بایدهای بومی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>معروفی بیماری‌ها و انگل‌های جدید به اکوسیستم اضافه شده</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>ایجاد کوه‌های (تغییر در ذخایر زنبیلکی)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>ایجاد کوه‌های (جهت انتقال)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تغییرات و یا کاهش اندازه جمعیت کوه‌های بومی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>خسارت به فعالیت‌های شیلاتی و کوه‌های دارای ارزش اقتصادی یا تفریحی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>نقصینه به فعالیت‌های آبزی پروری</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تورپسم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تجلی سیل در ناحیه مهاجم و تورپسم اکوسیستم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>تغییرات نیاز مسالمت انسانی</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 1- اثرات منفی زیست محیطی و اجتماعی - اقتصادی حضور M. leidy در دریاچه خزر

کلیه خدمات اکولوژیکی و اقتصادی اکوسیستم غی در دبای حسین کشور های حاشیه این دریا حائز اهمیت می‌باشد. البته از نظر اثرات منفی حضور آن از طریق کاهش منابع گیاهان پلاستیکی به ویژه گیاهان به خویش مشهود بود.اما سایر افراد نامطلوب این بدلیل به خویش منشأ نشده است.

(营销价格) ارزش گذاری کرده برخی از اثرات منفی را که در طولی اکوسیستم پذیراری می‌آورد اما سیاست‌های تغییرات منفی حاصل از این تهدید در سلسه‌ها و خدمات این اکوسیستم باید به طور غیر مستقیم ارزش گذاری شوند. در این تحقیق اثرات اقتصادی تهدید M. leidy به صورت غیر حذفی در گزارش ماهی کل‌کلا در سواحل شمالی کشور و به ویژه استان مازندران بحث و بررسی می‌شود. همچنین با توجه به اهمیت که سایر تاثیرات منفی در ناحیه حدود ۱۱ بر عملکرد نویسندگان اکولوژیکی دربای حسین کرده، بیشتر می‌شود این اثرات نیز مورد تحقیق و مطالعه قرار گیرند.

بر فعالیت‌های انسانی M. leidy

- ۱-۷-۸ اثرات هجوم

اقتصاد شیلاتی همواره تحت تأثیر کاهش ذخایر ماهیان با ارزش تجاری قرار دارد اما در این سلسله مباحث بیشتری بحث به میزان پرداخت ذخایر شیلاتی مفید به و بر خلاف موضوعات کشاورزی و جنگل‌داری. به تفکر انسانی و آفت‌ها در سلسله نجات سیاهی گونه توجه که مسئولیت به عمل آمده و تاثیرات گونه‌های ماهیان و بیگانه مکرر نظر قرار گرفته است.

تهدید بیولوژیکی در دبای می‌باشد. این پدیده به خاطر تاثیر بسیار وسیع‌الدیده که بر منابع کشور حاشیه این دریا داشت. نهایت منصهر بیرد در سطح جهانی می‌باشد. از سال ۱۹۸۸ میلادی کاهش و کاهش داشته‌است. به گونه ای که همه ماهیان انجیزه در کشور های

دیگر استقلال باید شورای از ۲۳۸۲ هزار تن در سال ۱۹۸۸ به ۴۳ هزار تن در سال ۱۹۹۴ رسید (GESAMP, ۱۹۹۷). این امر موجب شد بسیاری از صیادان در کشور های حاشیه این دریا کشته‌های صیادی خود را فروخته و حرفه‌ای حاصل حاصل را فراموش کنند.
با نوجه به تجربه تخلیه دریاچه سیاه، حضور

این سبک‌سازی‌ها در امر صید و اقتصاد شیلاتی کشورهای حاشیه‌ای این دریا نیز تأثیر گذار بوده‌است

(Mutlu, 2001; Uysal & Mutlu, 1993)

اثر بر فعالیت‌های صیدی

1.

- شکار غذاهای ماهیان

ماهیان قابل استحصال که می‌پذیرد. گونه‌های بومی مکان‌های تدافعی از هم که سبب موفقیت آن‌ها در رقابت با گونه‌های مهاجم بر سر منابع حیاتی می‌شود. در نتیجه از ظریف درک‌رسی به منابع غذایی در مضحک‌ترین قرار می‌گیرند. عدم درک‌رسی کافی به وسیع غداهای بر جرخه‌های حیاتی ماهیان تاثیر منفی دارد. مثالاً با تأثیر بر سیکل تولید مثل ماهی موفقیت تولید مثل آنان را دستی‌حوش اختلاف می‌سازد.

- کاهش مهتابی مواد غذایی در رنگ‌ناپایی غذاهای تماشایی می‌گذارد و جرخه مواد و انرژی در کلیه سطوح نبگذارن. غذاهای تماشایی نخست تأثیر قرار می‌گیرند. این تاثیرات از یادگیری ترتیب سطح شکه غذاهای بسیاری فیتوکلافنون ها و رئوپلیکمونی‌ها کاهش حیاتی ماهی‌ان خواهی می‌کنند و فک حریق تعلیم را نشان می‌دهد.

- تأثیر بر ناخن و لارو ماهیان:

معنی‌دار از نخم و لارو ماهیان تعقیب می‌کند و سبب مرگ M. leidyi

- و میرا لارو ها و نابودی تخم‌ها می‌شود. در نتیجه جمعیت‌های جدید از ماهیان صدمه می‌بینند و فراوانی کلیس های سی سی در بان همانند تغییرات ماهی‌گیری چشم‌دراز. این تغییرات در نهایت سبب ناپایداری جمعیت شده و پیوسته فراوانی جمعیت را جهت اختلاف می‌کند.

- حضور شانه‌دار در نورهای ماهی‌گیری: صیدان به هنگام جمع آوری نورهای ماهی‌گیری با میزان

بسیار زیادی شانه‌دار در نور مواد می‌شود که ممکن است به بدن ماهیان قسمتی باشد. این امر

علاوه بر خستگی نزدیک تجهیزات ماهی‌گیری، بر روحیه صیدان نیز تأثیر گذار می‌گذارد.

- مقاومت متوسط تعداد شهای صید در ماه در استان های شمال کشور ایران بین سال‌های 1378 و

1379 (پیش و پس از حضور M. leidyi در دریایی خزر) نشان میدهد این میزان کاهشی معادل 97/0٪ داشته است. جدول 14: (اداره آمار و اقتصاد صید. معاونت صید. شیلاتی ایران، آمار منتشر نشده.)
ذكر كاهش صيد ماهيّان ينارين فائئين، ينارين ازكار خانجات وابسته به شيلات أز فليل كارخانجات نوبيّة ماهيّانة، رغغ ماهيّان، كنسر ماهيّين و... خوراك أوله خود را از دست مي دهد. اين امر مبسوط اين كارخانجات با يدا طرفين كمتر 2 طرفين واقع خود فعالیت كنند و يسا توجه به سرمايه گذازی انجام شده، زبان های اقتصادی را متحمل شوند که ممکن است به تعظیم این واحد ها بیانجامد.

۲-۷۲-۱۹۷۸ صيد كيلكا ماهياني پيش از ظهور M leidyi در ديزي قزه

بخش عمده فون ماهياني دريابي دريابي خزر را ناسماهيان و كيلكا ماهياني تشکيل مي دهد (رك. ۲-۷). ۱. ماهياني كيلكا (1877) Clupeonella Kessler. اين ماهياني دريابي خزر هستند كه صيد صنعتي در مورد آنها اعمال مي شود. اين ماهي اگرچه همالي ساير ماهياني دريابي خزر مطلوبیت غذائي ردار و ارزانترين ماهي اين دريا محسوب مي شود ولی بواسته صيد چرخه و صنعتي های نايم كننده خوراك تعداد زيادي كارخانجات توزين آرد ماهي، رغغ ماهي و كنسر ماهي از كشورهای حاشيه دريابي خزر مي باشد. اين ماهياني نقش بسیار مهمي در اقتصاد شيلات كشورهای حاشيه دريابي خزر و به خصوص كشور ايران دارند.

بروسى آمار ميزان صيد كيلكا ماهياني در كننده كشورهای حاضري دريابي خزر نشان مي دهد در سالهای ۱۹۴۰-۱۹۴۲ اين ميزان ۶ هزار تن بوده است. اما در سال های بعد، روند صيد به شدت افزایش یافته است. به نوعی که در دهه ۶۰ اين ميزان با افزایش حدود ۲۸٪ به ۱۲۸ هزار تن مي رسد. پس از فروبيا جمهوري شوروی سابق ميزان صيد محدودا افزایش یافته است. ميزان صيد ماهي در دو سال اين ۱۹۸۸-۱۹۹۶ به ۱۱۱ هزار تن رسيده که تقريبا نصف ميزان كلي صيد در دهه ۶۰ مي باشد.

همچنین درصد كيلكا در صيد كلي، طي اين مي زيادة چشمگيري داشته است. اين رقم از ۱۴٪ در سال های ۱۹۴۰-۱۹۴۲ به ۹۵/۹ در سال های ۱۹۹۶-۱۹۹۷ رسيده است (جدول ۱۲-۷۲). (CaspNRIKH, 2001)
جدول ۱۲ - میزان صید ماهی کیلکا در کلیه کشورهای خاوری حوضه خزر (هزار تن)

<table>
<thead>
<tr>
<th>دوره های زمانی</th>
<th>۱۹۹۷</th>
<th>۱۹۹۸</th>
<th>۱۹۹۹</th>
<th>۱۹۹۹</th>
<th>۱۹۷۱</th>
<th>۱۹۷۰</th>
<th>۱۹۶۹</th>
<th>۱۹۶۹</th>
<th>۱۹۶۸</th>
<th>۱۹۶۸</th>
<th>۱۹۶۹</th>
<th>۱۹۶۹</th>
<th>۱۹۶۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان صید کل</td>
<td>۶۱۲</td>
<td>۶۱۸</td>
<td>۶۲۸</td>
<td>۶۲۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
</tr>
<tr>
<td>میزان صید کل</td>
<td>۶۱۲</td>
<td>۶۱۸</td>
<td>۶۲۸</td>
<td>۶۲۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
</tr>
<tr>
<td>میزان صید کل</td>
<td>۶۱۲</td>
<td>۶۱۸</td>
<td>۶۲۸</td>
<td>۶۲۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
</tr>
<tr>
<td>میزان صید کل</td>
<td>۶۱۲</td>
<td>۶۱۸</td>
<td>۶۲۸</td>
<td>۶۲۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
</tr>
<tr>
<td>میزان صید کل</td>
<td>۶۱۲</td>
<td>۶۱۸</td>
<td>۶۲۸</td>
<td>۶۲۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
<td>۶۱۸</td>
</tr>
</tbody>
</table>

شکل ۱۲ - صید کیلکا در دریای خزر (سواحل ایرانی)

صد کیلکا ماهیان در سواحل ایران برای اولین بار با شن فرود شناور صیدی در سال ۱۳۵۰ در بندر انزلی آغاز شده است. میزان صید سالانه این ماهی تا سال ۱۳۵۵ کمتر از ۲۰۰۰ تن بود. از سال ۱۳۶۸ تعداد شناورهای صیادی افزایش یافته و صید این ماهیان تا به منابع انجام شده است. سالانه نیز از همین سال در استان مازندران (بلدر) آغاز شد. طی دوره ده ساله ۷۸–۱۳۶۸ میزان صید بیش از ۱۰ برابر افزایش نشان داد. به طوری که این
میزان از ۱۳۸۰ تا ۱۳۷۰ به ۹۰ هزار تن در سال ۱۳۷۸ رسید (جدول ۱۳-۱۲). سال‌های دیگر شیلات ایران، از ۱۳۸۰ تا ۱۳۸۱

جدول ۱۳-۲ - میزان صید و تعداد تعاونی های صیادی کیلکا طی سال‌های ۱۳۸۰-۱۳۸۱

میزان صید کیلکا(تن)

تعداد تعاونی های کیلکا(شکت)

میزان از ۱۳۸۰ تا ۱۳۷۰ به ۹۰ هزار تن در سال ۱۳۷۸ رسید (جدول ۱۳-۱۲). سال‌های دیگر شیلات ایران، از ۱۳۸۰ تا ۱۳۸۱

c

۱۳۸۰ - ۱۳۷۹ - صید کیلکا ماهان پس از ظهور M. leidy i در دریای خزر

صد کیلکا ماهان تا پیش از حضور M. leidy i در آبهای ایران همواره رشد فاصله داشته است (نمودار ۱۳-۱). در سال ۱۳۷۸ صیادان و شناوران خود را با صید کیلکا رضایت کافی از حریف خود داشتند. تعداد تعاونی های کیلکا بین ۶ بهار آفتاب‌پائین و ۱۳ شکت در سال ۱۳۷۹ به ۲۰۰ شکت در سال ۱۳۸۰ رسید.

لیکن، از اواخر سال ۱۳۷۸ و طی سال‌های بعد، میزان صید کیلکا سیر نزولی نشان داد. چنانچه داده های مربوط نشان می‌دهند، پس از هجوم M. leidy i در سال ۱۳۷۹ میزان صید در کشور ایران به حدود ۷۸ هزار تن رسید. این میزان نسبت به سال قبل ۱۷/۲۹/۱ میلیون کاهش یافت. سپس مجموع صید در استان های شمالی کشور با کاهش حدود ۵۰٪ طی سال ۱۳۸۰ به ۲۵۱۸۰ تن رسیده است (سال‌های ۱۳۸۰ و ۱۳۸۱).

"صیادان عضو تعاونی ماهان کیلکا کلیه کسانی که عضو تعاونی بوده و در آنجا کار در صیادی می‌پردازند. این تعداد گروه صیادان شامل بر روی شناورهای صیادی اعم از موتور نیز که کشت هستند."
جدول 1- مفاهیم و وضعیت صید داهی کینگکا در استان های شمالی در سال‌های 1379-1388

<table>
<thead>
<tr>
<th>سال</th>
<th>میزان صید</th>
<th>میزان صید در شب هر شناور (تن)</th>
<th>تعداد شناور</th>
<th>نسبت تعداد شناور در هر شب (تن)</th>
<th>تعداد در ماه</th>
<th>نسبت تعداد در ماه (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1379</td>
<td>95000</td>
<td>13.9</td>
<td>1371</td>
<td>17.7</td>
<td>76475.3</td>
<td>26.03</td>
</tr>
<tr>
<td>1378</td>
<td>131000</td>
<td>16.7</td>
<td>1328</td>
<td>17.4</td>
<td>78000</td>
<td>28.02</td>
</tr>
<tr>
<td>1379</td>
<td>161000</td>
<td>18.8</td>
<td>1378</td>
<td>17.1</td>
<td>80000</td>
<td>28.02</td>
</tr>
</tbody>
</table>

نمک اداره آمار و اقتصاد صید - معاونت صید شیلات ایران، اداره مستقل

منابع: 1- وضعیت در سایر کشورهای جهانی دریای خزر، تیم مشاهده در شورت جنگ، کمک شیلات 13-14، نیوشان در سال 1399، 2-13-14، نیو

Daily catch of kilka (ton) per ship in Russia

شکل 13- میزان صید روزانه کینگکا نسبت به شناورهای صید در کشور روسیه

شیگانووا، 2002

شیگانووا، 2002
سازگاری اکولوژیکی شناه در مهاجم دریای خزر م‌لیدی با تعییده مناسب و عدم وجود نشانه‌های توسعه و گسترش بین جاندار گردیده و همگانشکه نمودار 19 نشان می‌دهد. با افزایش تراکم و بیوماس M. leidyi در دریای خزر (جدول 15) میزان صید کبک‌های ماهیان کاهش نشان داده است.

<table>
<thead>
<tr>
<th>سال</th>
<th>1377</th>
<th>1378</th>
<th>1379</th>
<th>تراکم (ind. m<sup>-2</sup>)</th>
<th>نتایج نوده (g.m<sup>-2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15087</td>
<td>2885</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>میزان صید کبک‌های ماهیان کاهش نشان داده است</td>
</tr>
</tbody>
</table>

جدول 15 تراکم و نتایج نوده M. leidyi در خوز جنوبی

Shiganova, (9) کیچیکی و همکاران, (1381), (2002) منبع:

بر اساس اثرات حضور M. leidyi بر صید کبک‌ها در استان مازندران

در حال حاضر بندر صبایی بابلسر در استان مازندران فعال ترین بندر صید کبک در کشور می‌باشد. بر اساس اطلاعات معاونت صید و بنادر ماهیگیری شیلات استان مازندران/ معاونت صبایی گازشکنی استان مازندران (1381) میزان صید ماهیان کبک در منطقه مورد مطالعه این تحقیق طی 5 سال گذشته بود. به این ترتیب M. leidyi به کاهش 1377 به شرح جدول 15 نشان می‌دهد. چنان که این جدول نشان می‌دهد میزان کل صید در سال 1377 در استان مازندران 31590 تن بوده که این میزان در سال 1380 با کاهشی به میزان 15/79% به 13788 تن رسیده است (نحوالار 20%)

131
<table>
<thead>
<tr>
<th>ماه</th>
<th>صید</th>
<th>مازندران</th>
<th>مازندران</th>
<th>مازندران</th>
<th>مازندران</th>
<th>مازندران</th>
</tr>
</thead>
<tbody>
<tr>
<td>فروردین</td>
<td>4664</td>
<td>3783</td>
<td>2848</td>
<td>1906</td>
<td>992</td>
<td>718</td>
</tr>
<tr>
<td>ارديبهشت</td>
<td>1345</td>
<td>676</td>
<td>1916</td>
<td>919</td>
<td>939</td>
<td>1495</td>
</tr>
<tr>
<td>خرداد</td>
<td>1819</td>
<td>763</td>
<td>370</td>
<td>714</td>
<td>433</td>
<td>330</td>
</tr>
<tr>
<td>تیر</td>
<td>264</td>
<td>191</td>
<td>1392</td>
<td>919</td>
<td>939</td>
<td>1495</td>
</tr>
<tr>
<td>مرداد</td>
<td>571</td>
<td>1335</td>
<td>3102</td>
<td>2738</td>
<td>390</td>
<td>1495</td>
</tr>
<tr>
<td>شهریور</td>
<td>3811</td>
<td>200</td>
<td>810</td>
<td>3103</td>
<td>390</td>
<td>1495</td>
</tr>
<tr>
<td>مهر</td>
<td>1306</td>
<td>3120</td>
<td>616</td>
<td>390</td>
<td>2738</td>
<td>3102</td>
</tr>
<tr>
<td>آبان</td>
<td>1196</td>
<td>350</td>
<td>2430</td>
<td>390</td>
<td>2738</td>
<td>3102</td>
</tr>
<tr>
<td>آذر</td>
<td>993</td>
<td>2650</td>
<td>3835</td>
<td>2738</td>
<td>3102</td>
<td>3102</td>
</tr>
<tr>
<td>دی</td>
<td>1082</td>
<td>930</td>
<td>2754</td>
<td>2738</td>
<td>3102</td>
<td>3102</td>
</tr>
<tr>
<td>بهمن</td>
<td>1082</td>
<td>2146</td>
<td>3968</td>
<td>2738</td>
<td>3102</td>
<td>3102</td>
</tr>
<tr>
<td>اسفند</td>
<td>1492</td>
<td>190</td>
<td>1392</td>
<td>2738</td>
<td>3102</td>
<td>3102</td>
</tr>
<tr>
<td>جمع کل صید</td>
<td>2378</td>
<td>2378</td>
<td>19648</td>
<td>28034</td>
<td>3190</td>
<td>1381</td>
</tr>
</tbody>
</table>

جدول 15- میزان صید ماهیان کیلکا در استان مازندران بر حسب تا (از سال 1387 تا 1388) لقبت 1381

منبع: معاونت صید و بنادر ماهیگیری شیلات استان مازندران. 1381

روند کاهش صید کیلکا در سال جاری (1389) همچنان ادامه داشته است. مقایسه میزان صید در شش ماهه اول این سال با میزان این ماهه در سال 1377 نشان می‌دهد میزان صید در 1378/23/23 کاهش داشته و از 390 تن بیش از 2258 تن رسیده است. این روند در سال‌های اخیر شدت بخشی نشان داده و میزان صید در سال 1381 در مقایسه با سال گذشته (1373) تن و کاهش معادل 8/18% داشته است. معاونت صید و بنادر ماهیگیری شیلات استان مازندران 1381.
از سوی دیگر، آمار و اطلاعات صید ماهیان کیکلا در سال‌های اخیر نشان می‌دهد که حضور تاثیر منفی بر فعالیت شناورهای صیادی اعمال نموده است. در سال‌های 1378 تعداد شناورهای صید کیکلا در استان های شمالی کشور 131 رونده و سرته صید هر شناور 72/52 تن بوده، اداره آمار و اقتصاد صید و معاونت صید شیلات ایران، آمار منتشر نشده (جدول 14-1). در سال‌های 1379 میزان صید به 78/000 تن رسیده که با احتساب 168 شناور فعال، سرته صید حدود 414/33 تن بوده است. این میزان نشانگر کاهشی معادل 35/98 درصد سرته صید می‌باشد.

همچنین آمار درخصوص استان مازندران نیز اینگونه آست که اگرچه تعداد شناورهای صیادی کیکلا در دو دهه 1370-1377 در این استان با عواملی حدود 37/7% از 55 عدد به 81 عدد رسیده است، معنی‌داری این شیلات استان مازندران (1381)، اما میانگین صید هر شناور 21/82 تن کاهش داشته است. در سال 1380، 1381 نسبت به سال 1378 انگار کاهشی معادل 47/63 درصد نشان داده.

م. لیدی

شیاطین میزان صید کیکلا در سواحل استان مازندران یکی از ظهور
جدول - بررسی پارامترهای صید کیکا در استان مازندران.

مبنای: معاونت صید اداره کل شیلات استان مازندران 1381

<table>
<thead>
<tr>
<th>سال</th>
<th>1381</th>
<th>1380</th>
<th>1379</th>
<th>1378</th>
<th>1377</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد شناور</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>میانگین صید هر شناور</td>
<td>42/47</td>
<td>24/27</td>
<td>42/46</td>
<td>62/66</td>
<td>60/76</td>
</tr>
</tbody>
</table>

نمودار - میانگین صید ماهانه کیکا در استان مازندران بین 77 و 80 از ظهور M. leidyi
در کشور ایران

الف: اثر بر درآمد صیادان در سواحل شمالی کشور

گرچه فیملت ماهی کیلکا طی سال‌های ۱۳۸۰-۱۳۸۲ به ۲۳.۵٪ افزایش داشت، اما تهدید می‌کند. ماهیان ماهی کیلکا در دریای خزر و منطقه آن کاهش صید همبسته درآمد صیادان شده است. نمونه‌دار ۱۲۷.۲ تا سال ۱۳۷۸ صید کیلکا و فیملت آن روند صعودی داشته است. طی این دوره میانگین

فیملت هر کیلوگرم کیلکا با افزایش معادل ۶۹۲/۱٪ از ۱۱۵ ریال به ۱۳۵۲ ریال رسیده است (سال‌نامه آماری شهرهای ایران، ۱۳۸۱) و با افزایش میزان صید میانگین درآمد شاغلین در این حرفه از ۳۲۰۰ هزار ریال به

۱۸۸۲۰۰۰۰ هزار ریال بالغ شده است. بنابراین، پس از حضور ماهی کیلکا در سال ۱۳۷۹ نسبت به سال قبل از آن (۱۳۷۸) میانگین درآمد صیادان با کاهش معادل ۱۳/۲٪ به ۱۱۴۷۰۰۰۰ هزار ریال رسیده است. روند کاهش میانگین درآمد صیادان ادامه داشته و در سال ۱۳۸۰ هزار ریال بالغ شده است. نسبت به سال قبل حضور ۹۳٪ کاهش

نیاز داشته و به ۱۶۷۷۰۰۰۰ هزار ریال تنزل یافته است (جدول ۱۷). مقارن با میانگین درآمد صیادان در سال‌های ۱۳۸۰ و ۱۳۸۱ نشان می‌دهد میزان زیان وارد شده صیادان.

نامه یک کاهش صید کیلکا در کل کشور به ۴۴ میلیارد ریال بالغ می‌شود. زیان اقتصادی ناشی از این متحمل در ترکیب با عوامل دیگری از قبیل گرانش نوسخت، گرانش نوسخت نیروی کار (استمرار کار) و سبب ایجاد تعارضاتی در این فضه می‌شود و حتی اگر میزان صید در

سطح سال ۱۳۸۰ باقی بماند، عملیات انتظاری نیاز را کاهش صیادان به کار خود ادامه دهد.

از سوی دیگر، این صیادان در حرفه خود باقی بمانند. ممکن است به صید گونه های دیگر

ماهی از جمله ماهیان استخوانی و خاویاری پردازند. با توجه به اینکه این ذخایر نیاز در حال حاضر بسیار حساس و وسیب تهدید می‌باشد، فشار بر این حس که سبب ایجاد اختلالی در جمع‌بست و پرورش

این ماهیان می‌شود و با ادامه این روند، بهره‌برداری پایدار از ذخایر شیلاتی امکان پذیر نخواهد بود.
جدول ۱۷ - قیمت کیلکا و درآمد صیادان کیلکا طی سال‌های ۱۳۷۲-۱۳۷۴.

منبع: سالنامه اماری شیلات ایران، ۱۳۸۰ (۹): قیمت غیر رسمی اعلام شده از سوی تعاونی صیادان کیلکا.

ب: اثر درآمد صیادان در استان مازندران

محاسبات نشان می‌دهد، که توجه به میزان میانگین سبد ماهی کیلکا (۱۳۷۸ تن) در سال ۱۳۸۰ در منطقه مورد مطالعه این تحقیق (استان مازندران) معاونت صید اداره کل شیلات استان مازندران، ۱۳۸۱، و با احتمال قیمت عمده فروشی کیلکا، اعلام شده از سوی سازمان شیلات ایران (سالنامه اماری شیلات ایران، ۱۳۸۰)، میانگین درآمد صیادان حدود ۲۰ میلیارد ریال بوده که در مقایسه با صدای ماهی‌های در سال قبل ۸ میلیارد ریال و در مقایسه با سال ۱۳۷۸ حدود ۱۸ میلیارد ریال کاهش داشته است (جدول ۱۸).
جدول ۱۸- قیمت کیلک و درآمدهای صیادان کیلکا طی سال‌های ۱۳۸۰-۱۳۸۷ در استان مازندران.

منبع: **معلومات صید اداره کل شیلات استان مازندران، ۱۳۸۱؛ ***سالنامه آماری شیلات ایران، ۱۳۸۰.**

<table>
<thead>
<tr>
<th>سال</th>
<th>میانگین قیمت کیلکا (ریال/کیلوگرم)</th>
<th>میزان صید کیلکا (تن)</th>
<th>درآمدهای صید کیلکا (ریال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۸۰</td>
<td>۲۰۰۶.۷</td>
<td>۱۵۰۰</td>
<td>۱۳۸۰</td>
</tr>
<tr>
<td>۱۳۸۱</td>
<td>۱۹۸۰.۸</td>
<td>۱۳۸۸</td>
<td>۱۳۷۹</td>
</tr>
<tr>
<td>۱۳۸۲</td>
<td>۱۹۶۸.۴</td>
<td>۱۳۷۹</td>
<td>۱۳۷۸</td>
</tr>
<tr>
<td>۱۳۸۳</td>
<td>۱۹۵۲.۵</td>
<td>۱۳۷۲</td>
<td>۱۳۸۱</td>
</tr>
<tr>
<td>۱۳۸۴</td>
<td>۱۹۳۲.۱</td>
<td>۱۳۷۱</td>
<td>۱۳۸۸</td>
</tr>
<tr>
<td>۱۳۸۵</td>
<td>۱۹۱۸.۳</td>
<td>۱۳۶۸</td>
<td>۱۳۸۰</td>
</tr>
</tbody>
</table>

در سال‌های ۱۳۸۰ و ۱۳۸۹ تعداد شناورهای صید کیلکا در استان مازندران ۸۱ رافورد و میانگین صید کیلکا به ترتیب ۱۳۷۲ و ۱۳۷۸ تن بوده است. (معلومات صید اداره کل شیلات استان مازندران، ۱۳۸۰). بر اساس میانگین صید هر شناور در سال ۱۳۷۹ در استان مازندران حدود ۳۴۲/۹۵ تن بوده و در سال ۱۳۸۰ میانگین صید هر شناور به حدود ۱۶۵/۱۵ تن کاهش یافته است. با توجه به قیمت های اعلام شده بر سری ۱۸۰، شیلات ایران (جدول ۱۸- ۱۸- سالنامه آماری شیلات ایران، ۱۳۸۱) میانگین درآمد سالانه هر شناور صیادی در سال ۱۳۸۰ معادل ۲۴۷۶۵۸۴۸۰ ریال بوده است. که این میزان نسبت به سال ۱۳۷۹ در سال ۱۳۸۰ بوده است.

ج: اثر بر صنایع شیلاتی

در راستای سیاست‌های زیست‌محیطی در استان مازندران که بهبود رفتاری از ذخایر کیلک داشته باشند، تعداد صید کیلکا در استان مازندران تا حدی کاهش یافته است. به همین دلیل میانگین هر صید در کشور به عنوان ماده اولیه در کارخانجات پودر ماهی مصرف می‌شود. در سال ۱۳۷۴ تعداد کارخانجات پودر ماهی در کشور ۱۲ عدد بوده است. در سال ۱۳۸۰ تعداد این کارخانجات حدود ۱۰۴ درصد افزایش یافته و به ۴۷ عدد رسیده است. همچنین، ظرفیت این تعداد کارخانه در
سال 1380 معادل 1200 تن ماده اولیه در روز بوده است (سالنامه آماری شیلات ایران، 1381). به عبارت
دبیگ خوراک مورد نیاز این واحد ها روزانه معادل 56400 تن می‌باشد (جدول 19-1). از سوی دیگر جنتاحی طرفیت هر کارخانه به طور متوسط 9000 تن در سال باشد و کلیه موارد اولیه
تولید بودن ماهی از طریق ماهی کیلکا تامین شود میزان صید کیلکا در سال 1380 (34500 تن) نهایا کافی
خوراک 5 کارخانه بودن ماهی را می‌دهد 42 کارخانه دبیگ عملکردی قادر به ادامه فعالیت نخواهند بود.

<table>
<thead>
<tr>
<th>سال</th>
<th>1375</th>
<th>1376</th>
<th>1377</th>
<th>1378</th>
<th>1379</th>
<th>1380</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد کارخانجات پودر ماهی</td>
<td>33</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>تعداد کارخانجات طرفیت (تن ماه)</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>تعداد کارخانجات میزان طرفیت هر کارخانه (تن/روز)</td>
<td>21/74</td>
<td>23/07</td>
<td>27/11</td>
<td>33/15</td>
<td>27/17</td>
<td>25/20</td>
</tr>
<tr>
<td>تعداد کارخانجات تولید بودن ماهی</td>
<td>16</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

جدول 19-1 تعداد و طرفیت کارخانجات تولید بودن ماهی در کشور و استان مازندران 1380-1374

معنی: سالنامه آماری شیلات ایران، 1381؛ معاونت صید اداره کل شیلات استان مازندران، 1381.

همچنین بر اساس آمار اداره کل شیلات استان مازندران در سال 1380 تعداد 28 کارخانه بودن ماهی در
این استان داشته بوده است (جدول 19-1). جنتاحی طرفیت خوراک هر کارخانه بودن ماهی به طور تقریب
حدود 9 هزار تن در سال باشد. کل میزان کیلکای صید شده در سال 1380 (13378 تن) تقریباً قادر به
تامین ماده اولیه خوراک 2 کارخانه بودن ماهی می‌باشد و 26 واحد بقیه مانده عملکردی قادر به فعالیت
نخواهند بود.
این کارخانجات با یکی از مزارع مناسب کشاورزی بی‌پیشنهادی به کار اماکنه خواهند داد و یا با روان‌های اقتصادی وارد سبب تعطیلی این واحدها خواهد شد. تعطیلی این واحدها به تولیدی اشتغال ایجاد شده در این عرصه‌ها شادی‌دا در معرض تهدید قرار می‌گیرد.

مجموع کل شاغلین مستقیم و غیر مستقیم صنعت سیب در حدود ٢٠٠٠ نفر می‌باشد. به عبارت دیگر حدود ٢٠ هزار نفر به طرفی از صنعت ماهیگیری کیکالا امرز معامله می‌کنند. با توجه به کاهش ۴٠ درصدی صید در سال ۱۳۸۰، جماهیر این روند ادامه بیابند با خوشبینانه‌ترین بینی‌ها و بینند در نظر گرفتن سایر پارامترها این‌گونه استحتناج می‌شود که سالانه حدود ۵۰٪ از شاغلین این صنعت از کار بکری می‌شوند (نقوی مطلق، ١٣٨١).

کاهش درآمدهای صیدان به نفع آن واحدهای صنعتی شیلاتی و در جدایی آن، قرار می‌دهد. این افراد یا به حرف‌های آدامه‌ها می‌دهند که در آن صورت به سختی قادر به تأمین معامله خود هستند و یا دست از کار می‌کشند و به مشاغل دیگر روی می‌آورند. شاغلین صنایع جانبی وابسته و صیدان بیشتر شده با توجه به معامل کنتوی اشتغال در کشور یا به مشاغل کاذب روی می‌آورند و یا در جستجوی فرصت‌های شغلی بیشتر روندهای شهری به دستگاه‌ها خواهند شد که پیامدهای منفی اقتصادی و اجتماعی دو دو حالت به وضع آشکار و شیبی توجه می‌باشد.

بر سایر ذخایرشیلاتی

M. leidyi

زبان وارداتی ناشی از احتراقی است. بیماری M. leidyi بسیار بیشتر از موارد مطرح شده در بخش هنری قبل است. با توجه به تأثیر منفی تأثیر بر عملکرد توانایی کربنات در برای خزر این شانه‌ها در به صورت تهدیدی بالقوه ذخایر شیلاتی درباس حزیبی به نابودی خواهد کشانید.

خواص دریایی خزر که به طلاه مبنا خوز است. محصول البرزیست که در سبد صادرات غربی نسیم کشور ما جایگاه‌برنامه‌دار به آنی‌ها که ماهیان خاورشایی از کیکالا ماهیان تغذیه می‌کنند. کاهش ذخایر تعقیبی این این ماهیان بر پارامترهای جمعیتی آنان تأثیر منفی خواهد داشت. دقت از زمینه از اتفاق دریا هزینه سنتگاه ماهیان خوارشایی؛ تغییر مسیر، حجم و کیفیت آب رودخانه‌ها و هوا و عوامل دیگری از این نوع می‌تواند زمینه نابودی این گونه از روش‌های سازنده باشد.

١٣١
مهم‌ترین حضوری یک‌ساعت نگیش در تنوع پلانکتونی دریای خزر و نسبت جرخه‌های رشد و M. leidyi نشکن‌داران پلانکتونی آن‌ها است. این تغییرات بر جمعیت ماهیان پلانکتون خوار نیز تأثیر سوء خود را اعمال می‌کند و علاوه بر تغییرات نامطلوب در پارامتر های جمعیتی این ماهیان، سبب کاهش صدها ماهیان استخوانی نیز خواهند شد.
فصل چهارم
نتیجه گیری و پیشنهادات
فصل چهارم - نتیجه گیری و پیشنهادات

1-4 پراکنش

Mnemiopsis leidyi

بخش نخستین بار در اواخر نوامبر سال 1999 در سواحل شمالی و در بهمن ماه 1378 در سواحل جنوبی دریای خزر دیده شده است. این جانور احتمالاً از طریق آب سوازندگانی ها از طریق کانال ولگا - دان در دریای سیاه به این دریا وارد شده و به عنوان مساعد بودن شرایط زیستی و نیز نرخ تولید مثل و تکثیر بسیار زیاد به سرعت در سرنشین دریای خزر پراکنش یافته و تراکم جمعیت آن طی سال های اخیر افزایش قابل ملاحظه ای نشان داده است.

اگرچه نوسانات شوری در دریای خزر از شمال تا جنوب آن زیاد است اما همگنی که در بخش های قبل بیان گردیده (ر. ک. 3-6-9-1) 40-60٪ نسبت به گستردگی M. leidyi شوری از 0.75-1.75 می باشد لذا این جاندار قادر است به سادگی در سرنشین این دریا پراکنش یابد.

با توجه به اینکه نوسانات در میزان شوری آب در خزر میانی و جنوبی کمتر بوده و شوری سطح در این نواحی 6-13/4 می باشد این مناطق مناسب مساعدتی را برای این شانه دار ایجاد می کند. از دیگر سو M. leidyi در گستردگی دمایی از 20-35 درجه سانتیگراد به رشد و توانید مختل است. لذا این جاندار می توانند در فصول گرم سال در سرنشین دریای خزر پراکنش یابد و با توجه به محتمال دمایی مناطق جنوبی و میانی خزر، چنین فصول سرد سال عمدها در خزر جنوبی به سر می برد. مجموع این فاکتورها هسبند شده است که در مقام مقایسه تراکم و زیست توده این جاندار در آب‌های ساحلی ایران بخش زیادی از سابر کشور‌های حاشیه دریای خزر بهاشد.

با توجه به کاهش صید کیلکا ماهیان در دریای خزر پس از ظهور M. leidyi به منظور بررسی چگونگی تاثیر این شانه در جمعیت کیلکا ماهیان و تعیین میزان رقابت غذايي بین آنها در آب‌های سواحل جنوبی (سواحل مازندران) دریای خزر تحقیق مقطعي طي سال هماي 1381-1382 انجام گرفته است.

134
بر اساس مشاهدات انجام شده (ر. ک. بخش ۱-۲)، طی فصول سرد اندازه جمعیت و نیز اندازه بدن جانور در استگاه‌های مورد مطالعه کاهش می‌یابد. اما در بهار مجدد ساپر بدن آن بزرگ می‌شود به صورتی که در ماه‌های می‌داد و شهروپری‌ها زیر دارای ۱۳ تا ۱۴ سانتی‌متر می‌شوند در میان نمونه‌ها دیده شده است. این امر ممکن است در نتیجه مهیاگری گذاری باید جاندار در فصول گرم باشد. زیر نیم‌ماده‌ها هم‌زمان با بک شکوفاگی زنو بلافکنون هایی است که به عنوان ماده غذایی مصرف می‌شوند.

به دریای خزر Mnemiopsis leidyi

۲-۴ - عوامل موثر در تهیه‌موفق

مطالعات نشان می‌دهد که طی ۴۰ سال گذشته تغییرات بازی در اکوسیستم ساحلی دریای خزر بسیار آمده که سبب برهم‌زایی تعادل این اکوسیستم گردیده است. این تغییرات را می‌توان به شرح زیر ذکر کرد:

- تغییر روش‌های صید و ماهیگیری شدید صنعتی
- صید به روش در کلیه فصول سالانه
- بهره برداری از آب روشن‌نوازه‌ها وارد، برای مصارف عمده‌کشاورزی همراه با تغییر رژیم جریان
- رودهای وارد به دریا

تغییر و تخریب سنت رودخانه‌ها و از میان رفتن زیستگاه‌ها و مکان‌های تخم‌زایی یک‌ماییان

- ابزار ساختاری که بر شوری خورها و مصب‌ها تأثیر دارد

افزایش میزان آلاینده

هر یک از این عوامل می‌تواند اثر یکی‌گر در تشکیل و از تکپ این تغییرات در شبکه غذایی دریای خزر بدایت آمده است. این تغییرات به همراه ایجاد کانال و لگا در و امکان کشتی رانی در دریای خزر زیبایی‌های حضور محض موثر است. M. leidyi

همچنین، خصوصیات ویژه این جاندار را به یک مهاجم می‌نموده است. این جاندار به یک جاندار متفاوت Mnemiopsis leidyi

 قادر به تولید جمعیت و سبب می‌باشد.
شکل بغدادی از یک جنادار گستره است و از میکرو زنل‌پلاکسون ها با ساخت پوشان ریز و نخست و لازم ماهیها را در یک میکروبرد.

این شکل وارد از یک کروکه کردن اندازه‌ی بدن، هنگامی‌که باعث نمایش جنادار آب‌مانده‌ی دیده‌ی میکرو نمایش داده.

فیل است محدود و سبب‌ی از تغییرات شوری و دم‌ها را تحمل کند.

در شرایط به‌هم‌بنا دما قادیر به رشد و تولید مثل سریع می‌باشد.

در هر زمان نختم ریزی قادیر به تولید میزان بسیار ریزدان تخم است.

مجموع عوامل فوق الذکر می‌تواند بسیار نشان‌دهنده به میزان leidy

پوندی‌های سهولت از دریاچه میان وارد دریاچه خزر شود و

ترات اکولوژیکی و بیولوژیکی متعادل در این آب‌های سمیتر با جای‌گذار

3-4 تأثیر حضور M. leidy بر ماهی کیلکای آنجویی

با نگهداری از یک ماهی ماهیان غذایی کیلکای ماهیان با این دسته‌ی ماهیان رقابت نموده و اثرات منفی غیرمستقیم را بر این ماهیان تحمل می‌کند. زبان‌های اختصاصی وارد بر صید که یک کیلکای را تضعیف حضور

این شکل دار در کشور ایران در محیط "ب" ۶-۵" ذکر شده است.

بررسی هیات انجام شده در آبهای سواحل نوشته و بایلسر نشان دهنده‌ی دقت نگهداری از منابع

و ماهیان کیلکای به ویژه کیلکای آنجویی می‌باشد. میزان همیوسانی در عمق ۲۰ متر در ایستگاه Schoener نمونه برداری و باسلام متوالی در عمق ۵ متر در ایستگاه نوشته متوالی ۸۸۸ بوده است.

بر اساس نمایه همیوسانی و فنی هیچ‌که‌ی نشان‌دهنده این منابع یا مورد مطالعه وجود ندارند با توجه به شاخص صفر و زمانی که بیشترین شاخص شاخصی این را جایگزین دارد آن برای

عدد ۱ است. در مطالعات انجام شده مقدار همیوسانی حاصله به عدد ۱ نرکیده است، که بین‌گیر میزان

شباهت تغییری این بالایی است که میان و کیلکای آنجویی وجود دارد. M. leidy

بر این نسخه بیشترین میزان رقابت تغییری ای با درصد همیوسانی ۱۹۵ / ۸۹ در عمق ۱۵ متر در ایستگاه

نمونه برداری باسلام و کمترین میزان همیوسانی به میزان ۸۵/۹۱۷ در عمق ۵ متر در ایستگاه نوشته دیده

می‌شود. ممکن است براکشت کیلکای آنجویی در خزر جنوبی در بازی با عمق پیش از

۱۰-۱۵ دنیل

اصلی این نتایج می‌باشد.
همچنین بر اساس داده‌های موجود از یوزون صید کیلکا ماهیان و مطالعات بیولوژیکی و اکولوژیکی که توسط سایر محققان صورت گرفته است (از ک.: 9-10،) نشان می‌دهد که صید بیشتر از اندازه تخم‌برداری می‌باشد. برای گسترش در دریای خزر داشته است. صید به‌روزه به‌همراه بر اثر ایجاد باره‌سازی ویژن می‌باشد. تغییر در فراوانی جمعیت و شاخص‌های مهم مربوط به جمعیت و وزن و جنسیت و مراحل سیستمیک کلیکا ماهیان آنجایی کرده و ریست خوان اکولوژیکی که توسط کلیکا ماهیان اشغال می‌شده در نتیجه این روند خانگی شده است. از دیگر سایر افراد آینده‌ها و سایر تغییرات اکوسیستمی که در اینجا این فصل بر شما می‌سازد سبب گردیده موفقیت تولید مثل کلیکا ماهیان و سایر ماهیان پلازیک دست‌خوش اختلال نیست. این نتیجه ریپ تغذیه‌ای اصلی از عرضه رقابت خارج M. leidyi و فشار آن کاهش یافته و زمینه برای گسترش فراوانی جمعیت M. leidyi یافته و به تعیین مهیابان بیشتر است.

لذا می‌توان اینگونه استنتاج نمود که بکیا از دلیل کاهش جمعیت کلیکا ماهیان پس از ظهور در دریای خزر می‌تواند ناشی از رقابت تغذیه‌ای باشد که میان این دو گونه وجود دارد. با کلکت زمانی این نوع رعایت مناطق میان دو جنگ‌ناپذیر می‌تواند به نوعی کننده مناطقی از نوع بازدارنده M. leidyi (Ammensalism) باشد و روز به روز به روز با افزایش جمعیت گونه مهاجم، جمعیت ماهیان کلیکا آنجایی کاهش یافته.

همچنین مطالعات آماری و گونه‌های نشان می‌دهد که نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی قرار می‌دهد. این نتایج مربوط به جمعیت کلیکا ماهیان در دو گونه را مورد بررسی C.
شانه‌دار در گستره‌های حدود ۱۰ میلی‌متر مس. (روحتی و همکاران، ۱۳۸۱: مقيم و همکاران، ۱۳۸۱) لذا قرار نیست به طور مستقیم و از طریق مصرف تخم و لارو ماهی کیکا مسبب شود. در نتیجه، جمعیت کیکا ماهی‌نگ نادکننده و با این شدت کاهش یابد.

بر اکوسیستم دریایی

بر اکوسیستم دریایی

۴-۴- تأثیر تهاجم M. leidy

مطالعات نشان می‌دهند که تا حدی با طریق مستقیم و غیر مستقیم بر اکوسیستم دریایی M. leidy

خزر تأثیر گذار یاشد.

اثر مستقیم: بر اساس بررسی‌های انجام شده، این جاندار با تغذیه از زلوپلاکتکونون ها اثر منفی مستقیم خوردن رشته‌های یکسان، داده و سپس گردیده تراکم زایاد نموده و توده و نتیجه‌گیری که این زلوپلاکتکونون ها و مرو پلاکتکونون ها در بخش‌های ایرانی دریای خزر کاهش یابد (روشن طبری، ۱۳۸۱: سیبک آرا، ۱۳۸۱). مشابه این اثرات به

در دریای سیاه نیز مشاهده شده است (زاویه‌ی، ۱۳۸۱) (GESAMP، ۱۹۹۷). M. leidy

هگمان حضور بر روی این انجام شده بر روی نمونه‌های M. leidy

ارزیابی نمونه‌برداری نوشته و بالاخره نشان می‌دهد. بیشترین میزان مصرف تغذیه ای از کویه‌بودها در دو واکنش بهار و اوایل تابستان و کمترین میزان آن در فصل زمستان صورت گرفته است. این نتیجه با تغییرات فصلی تراکم کویه‌بودها در دریای خزر مطابقت دارد. از این رو، به دلیل افزایش تراکم توده و تراکم M. leidy

همگونی درد در این واکنش به عنوان یک نگه‌بان استابتیمی می‌تواند کاهش متغیرهای جمعیت زلوپلاکتکونون در این دو واکنش بیش از خزر شماری

باشد و اینکه آن نیاز به مطالعه بیشتر دارد.

اثر غیر مستقیم: اگر چه ورود

Mnemiopsis leidy

به دریای خزر ممکن است تأثیر مستقیم فاحشی بر

حنفه‌های ای‌بندایی زنجیره غذایی در این دریا از خود نشان نداده باشد. اما اثر غیر مستقیم تهاجم بر

اکوسیستم دریایی حزور از طریق کاهش جمعیت ماهی‌نگ بلازیک و شکارچی‌ران راس زنجیره غذایی این

اکوسیستم به خوبی نمایان است.

بر حله‌های واپس زنجیره غذایی تأثیر نهاده و به بعید آن، جانداران راس خرم M. leidy

تعیینش از ملد. فک دریای خزر و ماهی‌نگ خاویاری تا تحت تأثیر تراکم گرفته‌اند. همچنین که مطالعات نشان

می‌دهند، جمعیت این جانداران به دلیل بالا‌رفتن تعداد مورتانی در حالی‌های اخیر به شدت کاهش داشته‌

۱۳۸
است. (ر. ک. ۱۸-۵۵ و ۷۳-۵۵)؛ فک دریایی خزر در رژیم تغذیه‌ای خندو پیش از ۸۰ آن ماهیان کیک‌کا مصرف می‌کند و ماهیان حاوی‌ناری نیز برای تغذیه به این نوع ماهی و سبار ماهیان پلازیک و بسیاری از آنها لذا کاهش جمعیت این نوع ماهیان می‌تواند سبب کاهش جمعیت جانداران راس هرم تغذیه ای شود براساس مطالعات پروژه اکوئوکستوکولریژی CEP در سال ۲۰۰۱. بررسی متفاوت فکه در سرخال نیمه جنوبی آبشار لاهیجان نشان داد که میزان کیک‌کا در رژیم تغذیه‌ای این جاندار بسیار اندک می‌باشد.

در دریای خزر و کاهش جمعیت فک و ماهیان حاوی‌ناری م. leidy می‌باشد دو انتخاب روند تحقیقات سبب بیشتر دارد یک نمونه دارد. شکارچیان راس هرم تغذیه ای نهایی مهمی در تنوع زیستی دریا اما که گونه تغییر در بارامترهای جمعیتی آن ها سبب تغییر در تنوع زیستی دریا خواهد شد.

در دریای خزر M. leidy در دریای خزر

۵ ۴ ۴ ۴-کنترل جمعیت

کنترل یک گونه وارداتی یا به‌هدف حذف کامل گونه مهاجم و یا به‌منظور تنظیم فراوانی جمعیت آن صورت می‌گیرد. به منظور کنترل فراوانی جمعیت M. leidy موجود (ر. ک. بخش ۷-۵۵) روش کنترل پیلولوژیکی می‌باشد. زیرا:

• یک نوع مکانیکی از طریق حذف مکانیکی افراد جمعیت. با توجه به تخریب و تکثیر M. leidy مکانیکی

• و نیز وضعیت Apple که لازم را ندارد.

• کنترل شبیه‌سازی، به طریق رها سازی سهمی شبیه‌سازی، با توجه به تأخیر شدید آنتی‌کش در محيط آب و نیز احتمال اثر سوء بر سایر موجودات زنده آمکان پذیرنیست.

• کنترل پیلولوژیکی، به طریق رها سازی مود شبیه‌سازی دارایی اثرات مهار کننده سیستم های نواحی تیم‌شنده و نیز بر سایر موجودات زنده نیز وجود دارد.

• کنترل رتیکیکی، از طریق دستکاری گونه رتیکیکی که سبب کاهش مارج می‌شود به روش قابل اعتماد تیست و نیاز به صرف هزینه M. leidy

زیاد برای انجام مطالعات دارد.
ب. باز سازی ذخایر ماهیان در زاین. این روش شامل افزایش ظرفیت سرد بهره برداری شیلاتی از دریاچه سیاه و بهبود محیط زیست آن است.

ج. توسعه آبزی بروری دریاپی با انگیزات برورش منابع و جوانی و شکار پلنگ در محیط طبیعی مصنوعی ممکن می‌باشد. برورش گونه‌های غیر بومی که نمی‌توانند در دریاچه سیاه و تولید مثل کنند می‌باشد.

د. بهبود ذخایر شیلاتی پلازیک تا سطح پیش از ظهور Mnemiopsis leidyi در سال 1988. این امر M. leidyi شاید با معروف گونه هایی که قادر به کاهش جمعیت هستند تحقق یابد.

همچنین این گونه کنترل بیولوژیکی را ممنع ترین رویکرد برای کنترل جمعیت دانست. در واقع این رویکرد گروه GESAMP به گونه‌ای ماهیان که رفتار نکننده‌ای و سازنده ورودی غذایی روزانه آن‌ها را تشکیل می‌دهد، را به عنوان نمونه‌هایی از شکارچی ممه‌های انتخاب کردن. این سه می‌باشد. این گونه غزیرات از Chadaus morhua, Oncorhynchus keta, Pterilius triacanthus و Beroe ovata که روی این گونه شکارچی بی‌مه مرحوم یک‌باره به مطالعه و بررسی منافع و مضرات معرفی آن‌ها پرداخته‌اند (GESAMP, 1997).

در سال 1997 حضور گونه B. ovata برای اولین بار در سواحل بلغارستان و ترکیه به ثبت رسید. B. ovata به گونه‌ای شیلاتی بسیار محبوب در دریای مدیترانه و دریای مرمور کازورش شده بود. ورود این گونه به دریاچه سیاه در سال 1997 معمولاً در ماه نوامبر گزارش شده که می‌تواند باعث افزایش سیاه‌پوشی در دریاچه سیاه می‌گردد.

M. leidyi در بررسی‌ها بررسی‌های مختلف در سال‌های مختلف در پاس داده شده است. (Arashkevich et al., 2001) گزارش شده که این گونه بیش از 10000 عدد در هر متر مکعب آب وجود دارد. در واقع تعداد انواع مختلف در سال‌های مختلف می‌تواند بسیار فاقد این سبب منجر به کاهش بیش از پیش در دریاچه سیاه شود. (Volovik, 2000) همیشه که باعث افزایش در تعداد گونه‌ها و افزایش جمعیت می‌گردد. (Ivanov et al., 2000)
در دربای خزر و پیامدهای مفیوی M. leidyi با توجه به ناحیه ناگوار دریای سیاه، پس از حضور حضرت آن بر صعبت صید، ضرورت مبارزه با این جاندار بیگانه برای کلیه کشورهای حاشیه این دریا بلافاصله ایجاد شد. در کردهمانی حینی که فروردین ماه سال ۱۳۷۹ توسط برنامه تجزیه‌مکری دریا (CEP) خریز سایر کشورها، تصمیم گرفته مبارزه بیولوژیکی را برای گروه جمعیت M. leidyi اتخاذ نمایند. جهت این جمعیت، به عنوان M. leidyi کنترل جمعیت در گونه Popillia truocanthus و B. ovata جهت مبارزه با M. leidyi کنترل جمعیت در جهت مبارزه با B. ovata تجارب در دیروز سیاه استفاده از علائم دار B. ovata آغاز نمایانگرین ۱۳۸۱/۲۰۰۲ (CEP) در حال حاضر مطالعات مقدماتی آزمایش‌کالا معنی‌دار به سبب در دیروز حضرت توسط محققین از کشورهای اروپا و افزایش در پژوهش‌های اکولوژیکی در دیروز خزر در کشور ایران در حال انجام است.

۱-۴- ویژگی‌های B. ovata و پیش بینی احتمالی آینده

در عین حال معنی‌دار M. leidyi چه جهت کنترل جمعیت B. ovata جهت ایست که از نظر تغذیه ای بسیار اختصاصی عمل می‌کند. به همین توجهی که حسن در M. leidyi کنترل کند. مراحل درونی نیز از کنترل نیز بیشتر است و به خوبی قادر است جمعیت B. ovata درخستی از M. leidyi را بیشتر کند.

در عین حال معنی‌دار B. ovata از چهار جنبه نیز نمایش می‌دهد: منبع غذایی مناسب برای ماهیان دریایی خزر محصور نمی‌شود و هیچ شکارچی طبیعی در این اکوسیستم ندارد. بدون شناخت شکارچی برای این جاندار حضور آن در دیروز خزر خالی از اشکال نمی‌باشد.

در تهاجم به شوری کمتر از B. ovata در دریای خزر بیشترین اثر پراکنش را در خزر میانی و به ویژه خزر جنوبی خوانده داشته‌این گونه قادر ۱۰ ppt نیست در نواحی با شوری کمتر از M. leidyi را کنترل کند.
یک گونه جدید برای اکوسیستم دریای خزر محصول می‌شود. که تاثیر حضور آن در دریای خزر نیز شکارچی آن در این اکوسیستم شناخته شده نیست. بنابراین این اثرات حضور آن در دریای خزر، ممکن است مشابه اثرات تاجاجی M. leidy در نظر گرفته شود. L. در نهایت آنکه ارزش اقتصادی ندارد. لذا برداشت و صید آن همانند ماهیان شکارچی می‌باشد.

M. leidy

با در نظر کردن معایب و مزایای فوق الذکر، در می‌پایه معنی B. ovata به دریای خزر نیاز به پروسه B. ovata به دریای خزر می‌دارد. به هنگام معرفی دریای خزر می‌که یک جایگاه اکولوژیکی دارد. به هنگام معرفی M. leidy دارد. به هنگام M. leidy به نظر نمی‌رسد کهی B. ovata در این حالت واقع است که بتواند از M. leidy تغذیه کند.

1. حالت اول که خوش بینانه ترین حالت است که M. leidy به صورت از B. ovata تغذیه کند.
2. در این حالت رابطه شکارچی-شکارچی بین آنها وجود می‌آید و را کاهش دهد و آن را تغییر می‌دهد. با خوش بینی به شیب پیش می‌توان نورهایی در صورت نز میان رفتن B. ovata به همین کمکی ممکن تغذیه آن M. leidy کامل.

3. حالت دوم آن است که M. leidy به میزبان جدید بزرگ و در صورت کاهش جمعیت B. ovata با محیط جدید می‌شود که به جنبه‌های مختلف آشیانه‌ها M. leidy به بیش می‌گردد. به هنگام M. leidy به شیب و دل می‌رود. به هنگام B. ovata به این نظر علت کمکی M. leidy به جمعیت B. ovata.

4. در حالت سوم هرچند با معرفی جمعیت B. ovata در خزر جنوبی می‌باشد، M. leidy جمعیت B. ovata اما با توجه به عدم امکان حضور در آبهای خزر شمالی، جمعیت M. leidy کوچکتر و حذف نمی‌شود. لذا، این اقدام ممکن است که به محدودیت از خزر شمالی M. leidy طوری کنند. وارد خزر جنوبی شده و در نتیجه، این سیکل همیشه آدامه خواهد داشت.

5. در حالت سوم هرچند با معرفی B. ovata در آبهای خزر شمالی، جمعیت M. leidy کوچکتر و حذف نمی‌شود. لذا، این اقدام ممکن است که به محدودیت از خزر شمالی M. leidy طوری کنند. وارد خزر جنوبی شده و در نتیجه، این سیکل همیشه آدامه خواهد داشت.

با توجه به اینکه شکارچی B. ovata به دریای خزر با موقعیت همراه نیستند، در حالت همان دوم و سوم B. ovata به دریای خزر ادامه می‌دهد و با توجه به حضور آن در آب‌های خزر جنوبی و میانی، دگر بسازه.
بیشترین خسارت ها در این محقق، بیشترین خسارت از طریق از بین کشتن یا تهیه می‌گردد.

با انجام آزمایشات، می‌توان گزارش داد که B. ovata (EIA) این روش‌ها در منطقه صورت گرفته و نیز علاقه بر M. leidyi، هم‌همه‌گان سایر شکارچیان B. ovata به‌طور قرار گیرند.

8- ۳ ـ جمع بندی و ارائه پیشنهادات:

در سال ۱۹۷۸ کوهن مهاجم Mnemiopsis leidyi وارد گردیده و در افزایش جمعیت آن تا کنون، تغییرات سیا را در اکوسیستم این دریا ایجاد کرده و زیان‌های اقتصادی مهمی را به کشور های خانیه این دریا تحمیل نموده است. با توجه به کاهش صدای کیفیت ماهیان در دریای خزر طی این مدت و به منظور بررسی چگونگی تاثیر M. leidyi کیفیت ماهیان و تغییرات سیا را در آن در انتهای سواحل خزر، (سواحل مازندران، دریای خزر) این تحقیق به طور مقطعی و طی سال‌های ۱۹۸۰-۱۳۸۱ انجام پذیرفته است.

نتیجه مطالعات بافتکی رفتاری و تغییرات علیه این بین M. leidyi عوامل انسانی و محیطی صحت او را برای افزایش جمعیت و برایکشن و سبب کاهش نموده و این امر باعث کاهش جمعیت کیفیت ماهیان و ایجاد زیان‌های اقتصادی بر جامعه صنایع و صنایع مرتبط با آن در کشورهای خانیه دریای خزر شده است. لذا ضرورت کنترل و حذف مهاجم اینکار ناباید است و کله کشور های خانیه این دریا باید با اتخاذ تدریخ علمی و اصولی به این M. leidyi مهم همت گام رساند.

در این مبحث، پیشنهادات برای از میان برد این موضوع مطرح می‌شود.

۱- همه جان که در ابتدای این فصل ذکر شد، فعالیت‌های انسانی در داخل و اطراف دریای خزر از طریق افزایش فعالیت‌های کشاورزی و صنعتی و نیز تغییرات مکانیکی و کیفی در دنبال جریان آب رودخانه‌ها متوجه به این دریا، علی سال‌های اخیر به شدت این اکوسیستم را دستخوش تغییرات است و نتیجتاً منفی زیست محیطی نموده است و برکناری‌های این باید قبلاً اجتناب شود.

کلیه این عوامل سبب کشیده است این اکوسیستم دریایی به شدت نسبی بیشتر کردد. بنابر این برای بهبود شرایط زیست محیطی این اکوسیستم پیشنهاد می‌شود، مدیریت و برنامه‌ریزی زیست محیطی.
مبتنی بر رهیافت اکوسیستمی (Ecosystem Approach) با نگرش کلی کوا توسط کشورهای حاشیه‌ای این دیب‌ها و سازمان‌های منطقه‌ای ای نیازه گردید.

2- بازیابی دخایر ماهیان پلازیک، به ویژه کیکلا ماهیان و به تبع آن ماهیان خاویایی و فک دریایی می‌توان با مراجعه به شرایط زیستی برای گونه‌های آسیب‌پذیر بدین ممکن است. لذا، پیشنهاد می‌شود مشترک همکاری کشورهای حاشیه این دیب‌ها با مانع صرب در کشورهای حاشیه ای که به سازمان شیلات ایران و سال جاری انجام نمایند به مساعد صرب در زمان نگه‌داشتن ماهی‌کبک شده و است. این نمود.

3- نتیجه‌گیری مشکلات ناشی از حضور اقدامی باید کنتور یا تا حدی با پایبند به انجام ارزیابی اثرات زیست محیطی (EIA) در منطقه صربت بگردد و کلیه کشورهای حاشیه این دیب‌ها در انتخاب تصمیم‌های مربوط به نوساز همکاری نمایند و نیز از جمله نامه‌ها و تأییدات و حمایت های مالی را به عمل آورند.

4- ارائه هماهنگی میان تحقیقات، باش و فعالیت های کنتور کننده به همراه کشش می‌تواند لازم و قابل بی‌توجه است. این کشورهای حاشیه این دیب‌های مالی و فعالیت‌های انجام مطالعات علمی در این زمینه امری ضروری و لازم می‌باشد.

5- مطالعه یک کشور در زیستگاه اصلی و تعیین آن به اکوسیستم بذرنه‌گه گونه به‌روشی نو و روان‌شناختی به‌جیوه ای تبیین می‌کند. سروش ویژه‌الگی گونه و اراداتی در زیستگاه حیاتی از نظر علمی اکوسیستمیک است و به‌جز گونه و اراداتی در اکوسیستم حیاتی تغییرات را در خصوصیات صربت و بیولوژیکی و بیولوژیکی خود نشان دهد. لذا ضرورت دارد معرفی هر گونه و اراداتی جدید به اکوسیستم دریای خزر با ملاحظات یکپارچه صربت بگردد.

6- گونه Beroe ovata به طور کامل تصادفی وارد دریای سیاه گردیده است. با توجه به ارتباط آن دریا با سایر اکوسیستم‌های دریایی آبی پیروان آن و پیش بیندن دریای خزر و نیز تفاوت‌های اساسی و بیانی اکوسیستم دریای خزر با اکوسیستم دریای سیاه، به ویژه، تفاوت در جامعه پلاکنتونی و برگ‌کی
بته دریای خزر با رعایت کلیه نکات

\(Beroe ovata \) به شکل محدود می‌باشد. بخش‌های انتهایی سال تحقیق و بررسی بر روی این گونه انجام شد.

با توجه به اینکه گونه در اب های با شوری کمتر از \(Beroe ovata \) در این روده به میانی و به ویژه خوزستان و دشت بیدبیچتی آب‌های ساحلی کشور ایران می‌باشد، می‌تواند مکان برای رزست این گونه به‌شمارآید.

با توجه به اینکه گونه در اب های با شوری کمتر از \(Beroe ovata \) در این روده به میانی و به ویژه خوزستان و دشت بیدبیچتی آب‌های ساحلی کشور ایران می‌باشد، می‌تواند مکان برای رزست این گونه به‌شمارآید.

با توجه به اینکه گونه در اب های با شوری کمتر از \(Beroe ovata \) در این روده به میانی و به ویژه خوزستان و دشت بیدبیچتی آب‌های ساحلی کشور ایران می‌باشد، می‌تواند مکان برای رزست این گونه به‌شمارآید.

با توجه به اینکه گونه در اب های با شوری کمتر از \(Beroe ovata \) در این روده به میانی و به ویژه خوزستان و دشت بیدبیچتی آب‌های ساحلی کشور ایران می‌باشد، می‌تواند مکان برای رزست این گونه به‌شمارآید.
11. از انگا که با احداث کانال ولگا - دن در خوزش شمالی ارتباط آب این دریا بسته به سایر دریاها اولین هجوم بیولوژیکی به این دریا نیست و آخرين نیز تعداد بیشتر می‌شود که گروه کاری ثابت برای پیشگیری کنتورل از میان بردن گونه‌های
مهاجم دریایی از طریق مکانیسم های جهالی در منطقه ایجاد شود.
12. به منظور به حداقل رساندن خطر ورود گونه‌های بی‌گونه پیش‌نهاد می‌شود مناطقی برای مدیریت آب توازن کنست‌ها در منطقه دریا خزر با همکاری سازمان‌های و نهادهای به‌مللی مانند کمیته حفاظت محيط زیست دریایی (IMO) و اوبران دریایی (MEPC) و سازمان به‌دولتی دریایی (IMO) (Treatment and Reception مختصات دریایی) و نسبت به تخلیه و امکان‌پذیری برای پذیرش با تصفیه‌ای آب توازن کنست‌ها در بنادر و نیک‌نیز با استفاده از اسکوئر های جدید نظیر استفاده
از گرمای و نور برای تصفیه باشند و تخلیه آب توازن کنست‌ها در این مناطق صورت گیرد.
13. مدلسازی بی‌گونه جمعیت M. leidyi در دریای خزر و نیز وضعیت اکوسیستم دریا خزر
پیش‌نهاد می‌شود و می‌تواند به عنوان نیروی مناسب اندازه‌گیری در بانش
و کنترل جمعیت این شانه در مورد استفاده فراز کردد.
14. به منظور شناخت بی‌گونه ویژگی‌های زیستی
M. leidyi در دریای خزر پیش‌نهاد می‌شود مطالعه بر
روی بی‌گونه فصلی، نواحی پراکنش، شرایط تولید مثل و زیست‌شکل M. leidyi برخی از این نواحی، زیست‌سازی اکوسیستم دریای خزر و منابع دیگری این دریا مهم‌تر یا اسکوئر های آن‌ها می‌باشد، در توده‌های مختلف M. leidyi دریا به ترتیب، نزدیک به زاده آوری، زمان تولید مثل و زمان‌های تولید ان باید در این دریا به طور پیوسته بهره‌برداری گردد. برعکس این زیست‌های پیش‌نهادی باید جهت مطالعه و

- رابطه نوع تغذیه ای M. leidyi با طول، اندازه جهان و تعداد موجودات که در دستگاه گیاهی آن
- بررسی رابطه زیستی این نوع زیست‌های موجود در رژیم تغذیه ای M. leidyi و تراکم و پراکنش
- آن‌ها در مناطق مختلف دریای خزر
- بررسی رابطه تغذیه ای M. leidyi با موجودات کف‌تکه که با این شانه‌ها برای خوان تغذیه ای مشترک دانست.
15 به منظور اعمال مدیریت علمی و اصولی دریای خزر بیشتر و دیگر بهترین مهارت کسب و کردن صید بیرویه کیکیا از زمان توسعه شیلات، میران آلابنده های ورودی به دریای خزر و اثرات حضور در دریای خزر و تعیین نقص و وزن سکه از این پارامترها در کاهش جمعیت ماهیان M. leidyi کیلکا با استفاده از آزمون های همبستگی کانوئی Canonical Correlation انجام شد.
منابع فارسی:

1. اداره آمار و نفوماتیک دفتر طرح و توسعه شیلات. ۱۳۸۰. سالنامه آماری شیلات ایران ۱۳۸۰-۱۳۷۹.
2. روایت عمومی شیلات ایران. شرکت سهامی شیلات ایران.
3. اداره آمار و نفوماتیک دفتر طرح و توسعه شیلات. ۱۳۸۱. سالنامه آماری شیلات ایران ۱۳۸۰-۱۳۷۹.
4. روایت عمومی شیلات ایران. شرکت سهامی شیلات ایران.
8. بشارت، ک. ۱۳۷۴. تعیین جایگاه های وسیع ماهی کیلکا در جزایر جنوبی دریای مازندران. مجموعه مقالات سیمینار ارائه نویسندگان دستاوردهای شیلات ایران در برنامه اول. دانشگاه تهران. شهریور ۱۳۷۳. صص: ۲۴۸-۲۸.
9. بیرشین، یا. و همکاران. ۱۳۷۹. اطلاعات بی‌مهره گان دریایی حریز. ترجمه نودمیلا دلیانا و فرضی. نظری. موسمه تحقیقات شیلات ایران. تهران.
13. روحی. 1381. مقایسه میزان و پراکنش شانه در مهاجم
هایی که سرده‌ای خانه‌ای دریایی خزر. تحقیق‌های هماشی ماهی شانه داران دریای خزر. خرداد 1381. سازمان ماهی‌گیری ایران.
14. روحی. 1381. مقایسه میزان و پراکنش شانه دریایی خزر هایی که سرده‌ای خانه‌ای دریایی خزر. خرداد 1381. سازمان ماهی‌گیری ایران.
15. تحقیقات هماشی ماهی شانه داران دریای خزر. خرداد 1381. سازمان ماهی‌گیری ایران.
16. زمانی. 1381. تحقیقات در ماهی‌گیری ایران.
17. اطلاعات علمی. همایاران.
18. سبک آرا. 1381. بررسی سنگینکانه‌های زنگر دریایی خزر. با تنازور
آنها. تحقیق‌های هماشی ماهی شانه داران دریای خزر. 20 - 29 خرداد 1381. سازمان ماهی‌گیری ایران.
19. سنجشی. با. 1381. بررسی اثرات اقتصادی - اجتماعی هجمه شانه دریایی خزر بر واحدهای تولید
پودر ماهی اسناد مازندران. تحقیق‌های هماشی ماهی شانه داران دریای خزر. 20 - 29 خرداد 1381. سازمان ماهی‌گیری ایران.
20. قاسم‌نوری. ا. 1380. کلیه‌های دریایی خزر. ترجمه: شبیکه. موسسه تحقیقات و آموزش شیلات ایران.
21. کانونی. 1381. مصدرهای تاریخی خزر. موسسه تحقیقات و آموزش شیلات ایران.
22. معاونت صیادی‌های کل شیلات ایران - صنف ماهی‌گیری ذخیره‌های خزر. خرداد 1381. موسسه تحقیقات و آموزش شیلات ایران.

49. Moss, A. 2002. Associate Professor Biological Sciences (Private correspondence). Auburn University, USA.

ضمائم
کلیات دریاچه خزر

1- جغرافیای طبیعی دریاچه خزر

دریاچه خزر بزرگترین و بزرگ‌ترین کشور ای بسته به قرار این که زمین است که در فناوری میان صفحات آسیا و آزیتیک، در شرق سیلزه جبال فسفاز و شمال رشته کوه های اقیانوس هزر قرار دارد (Doumont, 1998). این دریا در مکانی که جنوب غربی قاره آسیا با قاره آسیا تلاقی می‌کند بین عرض‌های جغرافیایی 37°48′ و طول جغرافیایی 43°47′ و 43° عرض شده است (شکل ۱-۱). بنا بر گزارش طول قرارگرفتن این دریا ۹۶۶ کیلومتر و بخش‌هایی از دریا ۱۰۳ km یک سطح قریبی این دریا ۵۴۷۰۰۰ km² و میزان عرض آن ۱۲۶ ۷۸۰۰۰ km² است. مساحت این دریا به جمعیت آب ۴۸۷۰۰۰ km² و حجم آب آن حدود ۱۹۶ ۷۸۰۰۰ km³ محسوب می‌شود. معادل ۱۰٪ آب‌های سطحی واقع در حوضه‌های جنوب شرقی باشند. در دایره المعارف پرینت‌کا طول این حوضه آبی ۵۴۷ km (۴۵) و عرض آن ۴۵۰ km (۴۳) است. مساحت آن ۳۳۴۱۷۹۶۰۰ km² و مساحت دریا ۱۰۴۰ ۰۰۰ km² کیلومتر و حجم آن حدود ۱۰۴۰ ۰۰۰ km³ است. گزارش آژانس ملی زیست‌نیروی اروپا (EEA) مساحت دریا را ۱۰۴۰ ۰۰۰ km³ و فاصله مسافت این دریا ۸۰۰۰۰ km² یا حجم آب این دریا را ۸۰ ۷۸۰۰۰ km³ و عرض ناوگان است. سطح آب دریاچه خزر در حال حاضر حدود ۴۵ m دارند. (Casp, 2002; Doumont, 1995; 1998; Mamev et al., 2002; CaspNRIK, 2001; Stone, 2002)

بنه کشور (جمهوری اسلامی ایران، آذربایجان، فراغترا، جمهوری فدرال سوییس و ترکمنستان) این دریا را با احاطه دارد و جمعاً مساحتی به طول ۷۰۰۰ km دارند.

پنج کشور جمهوری اسلامی ایران، آذربایجان، فراغترا، جمهوری فدرال سوییس و ترکمنستان

این دریا را با احاطه دارد و جمعاً مساحتی به طول ۷۰۰۰ km دارند.
در غرب به دماغه کولی در شرق (در شمال ترکمنستان) کشیده شده است (۲۰۰۲ میلادی).

مشیه این دریا را در شمال و شرق بیابان‌ها و صحراها تشکیل می‌دهند و یک در غرب و جنوب این منطقه به مرانگ و جنگل‌ها متصل می‌شوند.

خط ساحلی شمالی به شدت می‌افتد و شامل سالانه روده‌های ولگا، اورال و ایپا است. خطوط ساحلی جنوبی و میانی رودخانه بودی و کشتره از این سواحل باریک صخره‌ای تنها و با آب بی‌هادر ماهه‌ای را در بر می‌گیرند. خلیج فرهنگ نزدیک بخش شمالی در بخش شرقی است. ساحل‌های تراسه‌ای در غربی که به تدریج به سمت راست کووه‌های فقطه مرتفع می‌شود، شامل سواحل میرسی‌ها و دامنه دهانه‌های رودخانه است که توسط رودخانه‌هایی که از کوه‌های سرچشمه‌ریز می‌گرند به نیز ساحل جنوبی نسبت به سواحل غربی صاف نیست و از کرانه‌های ماسه‌ای دانه و رز درخت شده است.

شکل ۱- نقشه جغرافیای طبیعی و هیدروگرافی دریای خزر

EFA.UNEP/GRID Warsaw final map production.
2- تاريخه و منشأه طبيعي:

دربيات خزفسمتي هي دربيات شرقي است كتيب عامية عن الصفيح ثلاثي الفاصل صاحب من بابا ناميده مي عود.

الحدود بين 1000 و 1500 ميليون سنة، كانت دربيات فضائيات تمت من الأقانوس كتيب الى الأقانوس الآتي و آرام منفصل بورد. بعد هادة دليل تغيير مكان تدريجي كتيب صفحات فاراً لارتباط أن با’avios أرم و بابا’ن با’ها’نات آرام منفصل بورد.

رفيق والنتيجة منها مي دربيات با’ها’نات جهان حدا’نجل. فية لاتيتار ميروفيك و أوراق

الناتيون دربيات كتيب تمت شاكل دربيات ميدانته. سيه و خزر كنوبو بورد. طي ورنين هانو بالناتيون و

ميديب دربيات سيه و دربيات خزر جندين بار يبيديي بيوست و اهم جداً شدة است و الدنتيجه بهنصي

في حيات جانوري اولية من دربيات ها حذيفة و ببشي من آن تغيير كرده است. فيا’ناتي’ن دربيات خزر

كامل من دربيات سيه حدا’نجل و حوض هان اين دو دربي و همجنين حبات’ناتي’ن عنها بصورة كاملأ

مستقل من’ناتي’ن كتيب برستยกه است.

3- هيدروغرافي و نواسانات سطح آب

3-1- نواسانات سطح آب

في طول 5000 سال بيش ، نواسانات دربيات خزر في دامته m 6 محدود بوهد وميكنن سطح آب طي اين

دوره. m 66 و j 277 سطح دربيات جوناد أزاد ناكا. لان حيبين 1930 نا سطح آب

26 - بورد

است . بين سال هاين 1940 و 1977 سطح آب به ميتران بيش از

2 مابين رفته و اين سال 1980 به ميتران بيش

(Doumont, 1995) .

شروع به با’أمد كرده است (شكل 6-2).

عوامل كن سيبين اين نواسانات مي شويند به خوبي شاشته شدة نيمي و في اين زيمين وريبه نباحه متعددي

وجود در در. دمانت اين نواسانات را في تنتيجه تغيير در تخدير آب و تغيير در جريان ورودي رودخاها هنا و

(Doumont, 1998) .

لوبيز رود ولكما‘ مي داند و اين عامل را نسبت به عامل لول مهمير برمي شمرد

(Kaplin, 1995) .

في عقاب دلغيري تسم افريش جريان آب رودخاها هنا در تغيير سطح آب دربيات خزر 49%. افريش

بارش هاين سطح 12%. كانش در ميتران تخدير 25% و كانش جريان ورودي به خليج قره بخار. كه

سطح آب اين مابين تر ار سطح آب دربيات خزر است. 14% ذكر شدة است (Kaplin, 1995) .
شكل ۲- نوسانات سطح آب درآب در خزر طی سال های ۱۸۷۵ - ۱۹۹۵

Caspian Environment, maps and Graphics:

۲- گردش آب و جریانات

ویا درآب ویا آب در دریاچه خزر عبارت است از:

۱- جریان باز

۲- شکل خطوط ساحلی

۳- تفاوت دمای آب در بخشهای مختلف دریا

۴- زه کشی رودخانه‌ها و به ویژه رود ولگا

گردش عمومی آب در دریاچه خزر در شکل ۲-۳ توصیف شده است.

رود ولگا به طور چند شاخه از شمال وارد دریاچه خزر می‌شود. اولین شاخه آن به سمت جنوب غربی رفته و به سمت ساحل غربی خزر میانی جریان می‌پاید. شاخه‌های بعدی به شمال غربی دریا وارد و به سمت غرب جاری می‌شود پس از آن در ساحل شمالی و جنوبی خزر شمالی یک جریان آتشی سیکلون در جهت عقربه‌های ساعت پیوندی می‌آورد.

به شکل آب از خزر شمالی وارد خزر میانی می‌شود و در طول ساحل غربی حرکت می‌کند و به سمت جنوب غربی خزر جنوبی یک جریان به نام Absheron پسی به سمت جنوب رفته و به تبع بیکر خیز ساحلی در سیر شرقی تغییر جهت می‌دهد.

در نزدیکی ساحل کم عمق شرکی جریان به نقطه مقابل هدایت می‌شود. شاخه‌ای از این جریان آبی جدا شده و به سمت غرب می‌چرخد و به جریانی می‌پیوند که در Cheleken به جریان نزدیکی شده می‌شود.
طول ساحل غربی خزر جنوبی روان است. در نتیجه، چرخش سیکلوئی در رونوستو رفتگی عمیق خزر جنوبی تشکیل می‌شود.

شاخه‌ای دیگری از این چرخان جدا شده و به سمت ساحل شکل غربی خزر می‌ایست. رود بعد بیشتر به شمال به سوی شبه جزیره آشوران می‌چرخد. در آنجا به سمت شرق پیچیده و به جزیره دیگری می‌پیوندد که در طول ساحل شرقی به سمت شمال‌غرب روان است.

در جنوب شبه جزیره Mangishlak، بخش عمده این چرخان به سمت غرب چرخدیده و به آب هایی می‌پیوندد که در اتحاد ساحل غربی خزر میانی روان است و به این ترتیب چرخه ای را در این قسمت تشکیل می‌دهد.

شکل ۳- شماره عمومی چرخش آبدر دریا خزر.

منبع:

به این ترتیب یک چرخه سیکلوئی برهم چسبانده قسمت هایی دریا خزر را در بر می‌گیرد. در کنار این چرخه، یک چرخش سیکلوئی نیز در خزر میانی و خزر جنوبی جزیران دارد.

ماکروزم سرعت چرخان در آب‌های آزاد خزر شمالی ۳۰ cm/s است. بیشترین سرعت چرخان در نزدیکی شبه جزیره آشورون با سرعت ۱۰۰ cm/s گزارش شده است. سرعت منتوسط چرخان در مناطق ساحلی خزر میانی و خزر جنوبی ۴۰ - ۲۰ m/s و ماکروزم آن ۵۰ cm/s است. (Stone, R, 2002).

۳-۳ امواج و جزر و مد

مشابه ترتیبل امواج در دریاچه خزر یاد می‌باشد. خصوصیات امواج در قسمت‌های مختلف این دریا بسیار با هم متفاوت است.
ارتفاع 3 م. تناوب تا 10 sec. منحنی های اصلی امواج در خزر شمالی هستند. در محدوده غربی خزر شمالی امواج در جهت جنوب شرقی و شرقی بیشتری تناوب تکرار را دارند.

بادهای شرقی با سرعت 9 m/sec - 5 ثانیه تولید امواج بلندتر از 1 m شود. بادهایی با سرعت 15 m/sec - 15 ثانیه بیش از 2 m ایجاد می‌کند. در نتیجه بادهایی با سرعت 12-20 m/sec - 20 ثانیه سرعت باد است. در خزر میانی و جنوبی متوسط تناوب امواج در نزدیکی سواحل 4 m/sec و متوسط طول مرجع 16 m است. در مناطق دور از ساحل این مقادیر به ترتیب 7 m/sec - 20 ثانیه و 25 m است. در خزر جنوبی به واسطه بادهای جنوب شرقی امواج استاندارد ضعیف (1 m - 3 m) وجود دارد. در نواحی شرقی در نتیجه بادهای قوی و متوسط شمال غربی (5 m - 15 m/sec - 15 ثانیه) سرعت باد کمتر از 1 m رسد. توجه (10 m/sec - 20 ثانیه) هایی در خزر شمالی همچنین هنگام تولید 4 m/sec - 4 ثانیه می‌کند.

در دریای خزر عملا هیچ گونه روشی ناشی از جزر و میکرو ندارد.

4-2- رودخانه ها:

حدود 130 m رودخانه‌ها با اندازه‌های مختلف سالانه حدود 300 km² می‌کنند.

مهم‌ترین این رودخانه‌ها در سواحل شمالی و غربی واقع شده، اند. برگرکن و اصلی ترین رودخانه رود ولکا است که در بخش شمالی دریای خزر قرار دارد. تصویر ماهواره ای این دلیل رود ولگا در شکل 3-4-5 هستند. حدود 90 % از حجم کل ورودی دریای خزر از پادشاه رود ولگا اورژان کرورا، اورژان و سولاک تأمین می‌شود. رودخانه قسمت ایرانی و رودخانه کوچکی که در نواحی کم عمق غربی جنوبی ایستاده، باقی‌مانده اخوان ورودی را تشکیل می‌دهند. در کرانه شرقی دریای خزر هیچ رودخانه دامنی وجود ندارد.

جدول ۱- جریان و رودهای روادخته‌های حوضه دربایی خزر، منبع ۲۰۰۱

<table>
<thead>
<tr>
<th>نام رود</th>
<th>۱۹۸۸ - ۱۹۹۰</th>
<th>۱۹۸۹ - ۱۹۸۷</th>
<th>۱۹۸۷ - ۱۹۷۷</th>
<th>۱۹۷۷ - ۱۹۷۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Volga) ولگا</td>
<td>۱۹/۸</td>
<td>۱۷/۴</td>
<td>۲۰/۷</td>
<td>۲۷/۳</td>
</tr>
<tr>
<td>(Ural) اوژا</td>
<td>۸/۷</td>
<td>۸/۸</td>
<td>۷/۷</td>
<td>۷/۸</td>
</tr>
<tr>
<td>(Terék) ترکه</td>
<td>۱/۹</td>
<td>۰/۹</td>
<td>۶/۷</td>
<td>۶/۷</td>
</tr>
<tr>
<td>(Sulak) سولاک</td>
<td>۱/۵</td>
<td>۱/۵</td>
<td>۳/۸</td>
<td>۲/۸</td>
</tr>
<tr>
<td>(Samur) سامور</td>
<td>۸/۸</td>
<td>۷/۸</td>
<td>۱/۸</td>
<td>۱/۸</td>
</tr>
<tr>
<td>(Kura) کورا</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۲/۸</td>
<td>۲/۸</td>
</tr>
<tr>
<td>روادخته کوچک</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>روادخته ایران</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>کل جریان و رودهای روادخته</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۲۵۰/۷</td>
<td>۲۵۰/۷</td>
</tr>
</tbody>
</table>

چنانکه داده‌های موجود نشان می‌دهند، جریان و رودهای این رودها در نتیجه استفاده از آن ها به‌طور آبیاری زمین‌های زراعی حدود ۴۸ - ۴۵ کیلومتری داشته است. احداث سد‌ها و دیگر سازه‌های آب‌سیزین بر روی این رودها عامل دیگری جهت کاهش جریان و رودهای به حوضه دریایی خزر می‌باشد.

شکل ۴- دلتای رود ولگا

ورزگی‌های بومی شناختی دریای خزر

منطقه حزور در مراکز اقیم جهانی پالنتارکتیک و نقش شده و آزو بودن عمده تشکیل می‌شود نواحی بیابانی، و نیزه بیابانی سرد در شمال و شرق قرار دارند. نواحی مرتفع و کوهستانی گرمتر مناطق جنوب و غرب این دریا را در بیرون قرار داده و شرایط مناطق اغلب در کناره‌های دریای خزر درجه‌بندی معمول را از منوعیت زیستی را بیدار آورد. (CEPT, 2002, Dumont, 1998; EEA, 2002, Speciation) برای آن فراهم کردن کره است (CEPT, 2002).

نوع زیستی دریایی خزر و نواحی ساحلی آن سبب شده است که این منطقه بیش از باید ترس اکوسیستم‌ها در حنان باشد. بیشتر گونه‌ها موجود در این بیکارسیم‌های هستند و تقیب‌با یکدیگر کروه‌های جانوری نمایندگانی در این دریا. این منوع گونه‌ای به منشا تشکیل آن بر می‌گردد که زمان‌کاسته‌های را (CEPT, 2002, Dumont, 1998; EEA, 2002, Speciation) برای آن فراهم کردن کره است (CEPT, 2002).

۱- ۴- اجتماعات بلانکتونی دریای خزر

۲- ۴- ماهیان دریای خزر:
دریای خزر در مقایسه با اقیانوس ها و دریاهای آزاد دارای تنوع کوچکی از ماهیان می باشد.
در این دریا تقسیم به ۱۱۳ گونه و زیرگونه ماهی متعلق به ۱۷ خانواده گزارش شده است. ۲ گونه از این ماهیان کلبه وارداتی و سایر آنها بومی می باشند. بیشترین تنوع مربوط به خانواده های گاو و ماهیان کیور می باشد. کیورگان آزاد ماهیان و تاسماهیان به اعتبار کیورگان ماهیان ۲۳٪ کار ماهیان ۱۸٪ و بقیه ماهیان ۱۴٪ فرنگ ماهیان دریای خزر را تشکیل می دهد (۲۰۰۱) ; CaspNRIKH , EEA. ۲۰۰۲ ; (Gobies) و بقیه از کاکا ماهیان (Kilka & Shad) , (Salmons) , (Sturgeon) , (Lampry) , (Zander) , (Caspian Roach) , (Rudd & Tench) , (Perch).
۳- ماهیان نیمه مهاجر مانند : ماهی سفید کبد (Zander) رودخانه ای سوم معمولی (Perch) و سوم ماهیان نیمه مهاجر است. سه ماهیان نیمه مهاجر دریای خزر است. ۲۰٪ کل ماهیان دریای خزر است. سه ماهیان نیمه مهاجر ۱۱٪ / می باشد و بقیه را شکل ماهیان .
کمال ماهیان و گاو ماهیان تشکیل می دهد.
در ترکیب ماهیان تنوع زی لر دریای خزر شک ماهیان کیکا و سایر آنها می باشد. در بالا ماهی و شمشیر ماهی دیده می شود. ترکیب ماهیان عمیق زی شک شاه ناتاس ماهی ازون گونه، کلبه، کپور، سیم، اردک ماهی و کلیه گاو ماهیان می باشد. از نظر تعداد ماهیان تنوع زی دریای خزر با جمعیت ماهیان نیمه مهاجر است. اما از نظر وزنی ماهیان تنوع زی دریای خزر گونه گونه می باشد. کلیه ماهیان تنوع زی اکثریت به مناطق باز آنهای گرم خزر جنوبی زندگی می کنند. اما ماهیان گونه زی دریای خزر میانی بالات می شوند. ماهیان دریایی نمایی در خزر میانی و جنوبی تعیین می شوند.
(Kasymov. ۱۹۹۴)
قیس ۵۰ سال کلیدیت فعالیت‌های انسانی به علاوه، عوامل طبیعی تغییرات مهمی در جمعیت ماهیان دریایی خزر پدید آمده است. جدول ۳-۳ به می‌شود. صید کلیک که ماهی ماهیان دریایی خزر دست‌خوش تغییرات تدریجی شده است.

<table>
<thead>
<tr>
<th>دوره های زمانی</th>
<th>گونه های ماهی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ماهیان خاویاری</td>
</tr>
<tr>
<td>۱۹۹۰–۱۹۹۵</td>
<td>۲۱.۱</td>
</tr>
<tr>
<td>۱۹۹۶–۱۹۹۱</td>
<td>۱۰.۲</td>
</tr>
<tr>
<td>۱۹۹۷–۱۹۸۲</td>
<td>۱۱.۱</td>
</tr>
<tr>
<td>۱۹۹۳–۱۹۸۸</td>
<td>۱۹.۱</td>
</tr>
<tr>
<td>۱۹۹۴–۱۹۸۹</td>
<td>۱۹.۱</td>
</tr>
</tbody>
</table>

CaspNRIKH. ۲۰۰۱

جدول ۳-۳ ترتیبی صید ماهی در کلیه کشورهای حاضر حوضه خزر (هزار تن) میانگین: ۲۰۰۱

دلایل عملیه: این امر را افرادی که شرح زیر بررسیرد:
1. کاهش سطح آب دریا و کاهش سطح آب رود ونگا و پس از آن افزایش سطح آب
7. تغيير رؤويم جربان رودهاتنا وارده به دربنا و ایجاد سدها
3. از میان رفتن زیستگاه‌ها و مکان های نختم ریزی ماهیان
4. افزایش میزان آلاینده
5. تغيير روش‌های صيد و صيد به رو به
6. ورود گونه‌های مهاجم

3. پستاندار دربای خزر

تنها پستاندار دربای خزر در دریای خزر زندگی می کند فک خزر Phoca (Pusa) caspica می باشد این گونه بومی دربای خزر می باشد و در کلیه مناطق دربای خزر از دلتای رود ولگا تا سواحل ایران پراکنده دارد این جانور مهاجرت سالانه خود را از شمال به جنوب دربای خزر در اوایل بهار شروع می کند و سپس در زریال پاییز به شمال برمی گردد و زمستان را روی بخ های خزر شمالی سپری می کند فک دربای خزر به عنوان مصرف کننده بهره‌ور در ن_TM خوزستان گذشته این دریا به شما است که از ماهیان تغذیه می کنند که تاک‌را ماهیان غذا آنرا تشکیل می دهد. تصویر می‌شود. تخم‌گذاری ماهی دربای خزر باشد.
2. pocst

A

<table>
<thead>
<tr>
<th>Source</th>
<th>C biking</th>
<th>A Main State</th>
<th>1-Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 km</td>
<td>80%</td>
<td>70%</td>
<td>20%</td>
</tr>
<tr>
<td>800 km</td>
<td>70%</td>
<td>70%</td>
<td>30%</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Source</th>
<th>C biking</th>
<th>A Main State</th>
<th>1-Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 km</td>
<td>80%</td>
<td>70%</td>
<td>20%</td>
</tr>
<tr>
<td>800 km</td>
<td>70%</td>
<td>70%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Conclusion

The results presented here demonstrate the influence of the source on the outcomes. The data indicates a significant correlation between the source and the resulting outcomes, showing that the source has a substantial impact on the final results.
ضریمه ٣

Mnemiopsis leidyi ماهیان شکارچی

بیشماری از نویسندگان می‌دانند که *M. leidyi* به‌طور عمده‌ای در دیارای خزر بوده و حداکثر عدد ۴۴ کننده از روش برداشت گونه شکارچی بی‌اساسی است. نتیجه‌ی آزمایشات این گونه ماهی وجود دارد که عملیات از نظر تغذیه‌ی ماهیان، بیشتر به ماهی شونده و بیش از دیگر گونه‌ها وجود داشته‌است. در این مطالعات، می‌توان به‌عنوان مطالعات ضرورت دارد که نتایج ویژگی‌های ویژگی‌های سایر ماهیان موجود در خزر را در نظر بگیریم.

سایر ماهیان موجود در خزر نیز در این مطالعات، نوآوری پرآکثر ماهیان در این دیار و مورد بررسی قرار گرفتند. در جدول زیرْیزگیری‌ها به‌عنوان نمونه از ماهیانی که می‌توانند برای کنترل

بی‌اساسی در خزر معرفی شوند ذکر شده است.

۱۷۲
<table>
<thead>
<tr>
<th>Striated muscle</th>
<th>Cardiac muscle</th>
<th>Smooth muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reptilian heart</td>
<td>Chordate heart</td>
<td>Ornithodorous heart</td>
</tr>
</tbody>
</table>

(GESANIP1997: ()</body>
Peprilus triacanthus

- Large Pupil
- Silver Streaks
- No spots
- Narrow caudal fin
- 13-17 anal rays
- Large Mouth (Maxillary extends behind eye)

Oncorhynchus keta

Chadus morhua
جدول سرواژه‌ها

<table>
<thead>
<tr>
<th>سرواژه‌های (Acronymy)</th>
<th>شرح زیر است:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD= Convention On Biological Diversity</td>
<td>کنوانسیون تشیع زیستی</td>
</tr>
<tr>
<td>CEP = Caspian Environment Program</td>
<td>برنامه محيط زیست دریای خزر</td>
</tr>
<tr>
<td>IMO= International Maritime Organization</td>
<td>سازمان بین‌المللی دریانوردی</td>
</tr>
<tr>
<td>IUCN= the International Union for Conservation of Nature and Natural Resources</td>
<td>اتحادیه بین‌المللی حفظ طبیعت و منابع طبیعی</td>
</tr>
</tbody>
</table>

175
Study of Feeding Competition between Invasion Ctenophore (M. leidy) and Anchovy (C. engrauliformis) in the Southern Caspian Sea (Mazandaran coast)

Fariba Darvishi
Department of Environment, Science and Researches Branche,
Islamic Azad University, Iran

Abstract

Mnemiopsis leidy, one species of phylum Ctenophora, is a native species in America. It has most likely moved across the Atlantic in the ballast water of cargo ships to the Black sea in 1982 and then to the Caspian Sea through the Volga-Don Channel, in Nov 1999. The population of M. leidy grows rapidly and by end of 2000, the entire sea was teeming with them.

This survey was arranged in order to study the relationship between the invasion of M. leidy and sharp decline in main stocks pelagic fish such as Kilka.

Dietary analysis was conducted on Anchovy Killka (Clupeonella engrauliformis) and M. leidy from August 2001 to October 2002 in two stations, located at the coastal water near Babolsar (52.38° E, 36.42° N) and Nowshahar (51.33° E, 36.39°N) in the Caspian Sea province of Mazandaran, Iran. M. leidy was caught by plankton net, at three vertical strata of both station at: surface 5 m, 10 m, and 15 m. the Kilka was caught by fisheries boat at Babolasar fishery harbour. Samples of M. Leidy were not fixed in its common fixative, we used 96% Ethanol.

In order to study of M. leidy digestion system some alive samples, directly, were studied by the fluorescence microscope which was connected to a computer prepared specially for this process. In many cases, the light was directly reflected on the sample and microscopic image was prepared in dark background.

We found that there were some common organisms in diet of both species, the Schoener index analysis reflected these similarities, as values more than critical level of overlap (>89 in babolsar samples and >84 in nowshahar samples) were found.

Results from this study suggests that M. leidy and Anchovy have a similar feeding niche and competition between them is one of the reasons to decline in anchovy stocks.

Economical effects of M. leidy invasion in research area were studied by data on kilka caught before and after introducing M. leidy.